Publications

Detailed Information

Enzymatic synthesis of chlorogenic acid glucoside using dextransucrase and its physical and functional properties

Cited 19 time in Web of Science Cited 21 time in Scopus
Authors

Nam, Seung-Hee; Ko, Jin-A; Jun, Woojin; Wee, Young-Jung; Walsh, Marie K.; Yang, Kwang-Yeol; Choi, Jin-Ho; Eun, Jon-Bang; Choi, Jeong; Kim, Young-Min; Han, Songhee; Nguyen, Thi Thanh Hanh; Kim, Doman

Issue Date
2017-12
Publisher
Elsevier BV
Citation
Enzyme and Microbial Technology, Vol.107, pp.15-21
Abstract
Chlorogenic acid, a major polyphenol in edible plants, possesses strong antioxidant activity, anti-lipid peroxidation and anticancer effects. It used for industrial applications; however, this is limited by its instability to heat or light. In this study, we for the first time synthesized chlorogenic acid glucoside (CHG) via transglycosylation using dextransucrase from Leuconostoc mesenteroides and sucrose. CHG was purified and its structure determined by nuclear magnetic resonance and matrix-associated laser desorption ionization–time-of-flight mass spectroscopy. The production yield of CHG was 44.0% or 141mM, as determined by response surface methodology. CHG possessed a 65% increased water solubility and 2-fold browning resistance while it displayed stronger inhibition of lipid peroxidation and of colon cancer cell growth by MTT assay, compared to chlorogenic acid. Therefore, this study may expand the industrial applications of chlorogenic acid as water-soluble or browning resistant compound (CHG) through enzymatic glycosylation. © 2017 Elsevier Inc.
ISSN
0141-0229
Language
English
URI
https://hdl.handle.net/10371/147851
DOI
https://doi.org/10.1016/j.enzmictec.2017.07.011
Files in This Item:
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share