Publications

Detailed Information

Nedd4 Deficiency in Vascular Smooth Muscle Promotes Vascular Calcification by Stabilizing pSmad1

Cited 15 time in Web of Science Cited 14 time in Scopus
Authors

Lee, Ji-Hyun; Jeon, Seon-Ae; Kim, Byung-Gyu; Takeda, Michiko; Cho, Jae Jin; Kim, Dong-Ik; Kawabe, Hiroshi; Cho, Je-Yoel

Issue Date
2017-05
Publisher
American Society for Bone and Mineral Research
Citation
Journal of Bone and Mineral Research, Vol.32 No.5, pp.927-938
Abstract
The nonosseous calcification process such as atherosclerosis is one of the major complications in several types of metabolic diseases. In a previous study, we uncovered that aberrant activity of transforming growth factor (TGF-) signaling pathway could contribute to the vascular smooth muscle cells' (VSMCs) calcification process. Also, we identified NEDD4 E3 ligase as a key suppressor of bone morphogenetic protein (BMP)/Smad pathway via a polyubiquitination-dependent selective degradation of C-terminal phosphorylated Smad1 (pSmad1) activated by TGF-. Here, we further validated and confirmed the role of Nedd4 in in vivo vascular calcification progression. First, Nedd4 deletion in SM22-positive mouse tissues (Nedd4(fl/fl);SM22-Cre) showed deformed aortic structures with disarranged elastin fibers at 24 weeks after birth. Second, vitamin D-induced aorta vascular calcification rate in Nedd4(fl/fl);SM22-Cre mice was significantly higher than their wild-type littermates. Nedd4(fl/fl);SM22-Cre mice showed a development of vascular calcification even at very low-level injection of vitamin D, but this was not exhibited in wild-type littermates. Third, we confirmed that TGF-1-induced pSmad1 levels were elevated in Nedd4-deficient primary VSMCs isolated from Nedd4(fl/fl);SM22-Cre mice. Fourth, we further found that Nedd4(fl/fl);SM22-Cre mVSMCs gained mesenchymal cell properties toward osteoblast-like differentiation by a stable isotope labeling in cell culture (SILAC)-based proteomics analysis. Finally, epigenetic analysis revealed that methylation levels of human NEDD4 gene promoter were significantly increased in atherosclerosis patients. Collectively, abnormal expression or dysfunction of Nedd4 E3 ligase could be involved in vascular calcification of VSMCs by activating bone-forming signals during atherosclerosis progression. (c) 2016 American Society for Bone and Mineral Research.
ISSN
0884-0431
Language
English
URI
https://hdl.handle.net/10371/147884
DOI
https://doi.org/10.1002/jbmr.3073
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share