Publications

Detailed Information

Multifunctional Dendrimer Ligands for High Efficiency, Solution-Processed Quantum Dot Light-Emitting Diodes

Cited 65 time in Web of Science Cited 72 time in Scopus
Authors

Cho, Ikjun; Jung, Heeyoung; Jeong, Byeong Guk; Chang, Jun Hyuk; Kim, Younghoon; Char, Kookheon; Lee, Doh C.; Lee, Changhee; Cho, Jinhan; Bae, Wan Ki

Issue Date
2017-01
Publisher
American Chemical Society
Citation
ACS Nano, Vol.11 No.1, pp.684-692
Abstract
We present multifunctional dendrimer ligands that serve as the charge injection controlling layer as well as the adhesive layer at the interfaces between quantum dots (QDs) and the electron transport layer (ETL) in quantum dot light-emitting diodes (QLEDs). Specifically, we use primary amine-functionalized dendrimer ligands (e.g., a series of poly(amidoamine) dendrimers (PADs, also referred to PAMAM)) that bind to the surface of QDs by replacing the native ligands (oleic acids) and also to the surface of ZnO ETL. PAD ligands control the electron injection rate from ZnO ETL into QDs by altering the electronic energy levels of the surface of ZnO ETL and thereby improve the charge balance within QDs in devices, leading to the enhancement of the device efficiency. As an ultimate achievement, the device efficiency (peak external quantum efficiency) improves by a factor of 3 by replacing the native ligands (3.86%) with PAD ligands (11.36%). In addition, multibranched dendrimer ligands keep the QD emissive layer intact during subsequent solution processing, enabling us to accomplish solution-processed QLEDs. The approach and results in the present study emphasize the importance of controlling the ligands of QDs to enhance QLED performance and also offer simple yet effective chemical mean toward all-solution-processed QLEDs.
ISSN
1936-0851
Language
English
URI
https://hdl.handle.net/10371/148198
DOI
https://doi.org/10.1021/acsnano.6b07028
Files in This Item:
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share