Publications

Detailed Information

Task-Oriented Design through Deep Reinforcement Learning

DC Field Value Language
dc.contributor.advisor곽노준-
dc.contributor.author최준영-
dc.date.accessioned2019-05-07T04:13:54Z-
dc.date.available2019-05-07T04:13:54Z-
dc.date.issued2019-02-
dc.identifier.other000000154948-
dc.identifier.urihttps://hdl.handle.net/10371/151422-
dc.description학위논문 (석사)-- 서울대학교 대학원 : 융합과학기술대학원 지능형융합시스템학과, 2019. 2. 곽노준.-
dc.description.abstractWe propose a new low-cost machine-learning-based methodology which
assists designers in reducing the gap between the problem and the solution
in the design process. Our work applies reinforcement learning (RL) to find
the optimal task-oriented design solution through the construction of the
design action for each task. For this task-oriented design, the 3D design
process in product design is assigned to an action space in Deep RL, and a
desired 3D model is obtained by training each design action according to the
task. By showing that this method achieves satisfactory design even when
applied to a task pursuing multiple goals, we suggest the direction of how
machine learning can contribute in design process. Also, we have validated
with product designers that this methodology can assist the creative part in
the process of design.
-
dc.description.tableofcontents1 Introduction 1
2 RelatedWorks 4
2.1 Constructive Design . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . 4
3 Environment 7
3.1 Task Specification . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 3D Simulation Environment . . . . . . . . . . . . . . . . . 8
3.3 Reinforcement Learning Environment . . . . . . . . . . . . 9
4 Experiment 12
4.1 Pouring Environment . . . . . . . . . . . . . . . . . . . . . 12
4.1.1 Quantitative Analysis . . . . . . . . . . . . . . . . . 13
4.1.2 Qualitative Analysis . . . . . . . . . . . . . . . . . 14
4.2 Shaking Environment . . . . . . . . . . . . . . . . . . . . . 15
4.2.1 Quantitative Analysis . . . . . . . . . . . . . . . . . 16
4.2.2 Qualitative Analysis . . . . . . . . . . . . . . . . . 17
4.3 Hybrid-Learning . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.1 Quantitative Analysis . . . . . . . . . . . . . . . . . 19
4.3.2 Qualitative Analysis . . . . . . . . . . . . . . . . . 20
4.4 Contribution in Design Process . . . . . . . . . . . . . . . . 20
ii
5 Conclusion 22
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Bibliography 24
Appendix 26
Abstract in Korean 29
-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subject.ddc620.82-
dc.titleTask-Oriented Design through Deep Reinforcement Learning-
dc.typeThesis-
dc.typeDissertation-
dc.description.degreeMaster-
dc.contributor.affiliation융합과학기술대학원 지능형융합시스템학과-
dc.date.awarded2019-02-
dc.identifier.uciI804:11032-000000154948-
dc.identifier.holdings000000000026▲000000000039▲000000154948▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share