Publications

Detailed Information

Physico-chemical Characterization of Nanogaps and Application of Nanostructures : 나노틈의 물리화학적 고찰과 나노 구조체의 응용

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

이향봉

Advisor
김관
Major
화학부
Issue Date
2012-02
Publisher
서울대학교 대학원
Abstract
In chapter 1 is described general introduction of this thesis. Especially, a brief overview of self-assembled monolayers (SAMs) and surface-enhanced Raman scattering (SERS) is presented.
In chapter 2, SERS of 4-aminobenzenethiol (4-ABT) at the nanogaps between metal nanoparticles and a planar metal substrate is described. Firstly, Pt is intrinsically a weak SERS substrate, but a very intense SERS spectrum can be obtained from adsorbate on Pt by assembling nanosized Ag particles onto them. At the beginning, no Raman peak was detected for 4-ABT on Pt, but upon attaching Ag nanoparticles onto the amine groups of 4-ABT on Pt (Ag@4-ABT/Pt), distinct Raman spectra were observed. The Raman spectra observed for Ag@4-ABT/Pt must be SERS spectra, occurring through an electromagnetic (EM) coupling of the localized surface plasmon of Ag nanoparticles with the surface plasmon polariton of the smooth Pt substrate. Overall, the SERS intensity of Ag@4-ABT/Pt gradually decreased as the excitation wavelength was increased from 488 to 514.5, 568, and 632.8 nm. This could also be confirmed from the finite-difference time-domain (FDTD) simulation. Secondly, SERS for molecules trapped in the nanogaps formed by a planar Ag substrate and Pt nanoparticles is presented. This is the opposite case of Ag@4-ABT/Pt. In the Pt@4-ABT/Ag, a higher Raman signal was measured at a shorter excitation wavelength, and further the higher Raman signal was observed when the larger Pt nanoparticles were laid on the amine groups of 4-ABT, regardless of the excitation wavelength. Finally, the SERS characteristics of nanogaps formed by a planar Au substrate and Pt nanoparticles are presented. This is to make a comparison between the electromagnetic interactions of Pt with Au and Ag. Similarly to Pt@4-ABT/Ag, the higher Raman signal was observed when the larger Pt nanoparticles were adsorbed onto 4-ABT to form Pt@4-ABT/Au. However, the excitation wavelength dependence was opposite such that the higher intensity was observed in the order of excitations 632.8 > 568 > 514.5 > 488 nm for the Pt@4-ABT/Au system. This is in contrast with what was observed for the Pt@4-ABT/Ag system. Much the same conclusion could be made from the FDTD simulation. These observations clearly illustrate that the inherent obstacles to the more widespread use of SERS can be overcome by the judicious use of SERS-active nanoparticles directly or indirectly.
In chapter 3, silver nanostructures applicable as core materials of SERS-based molecular sensors and barcodes are described. Rhodamine B isothiocyanate (RhBITC) is a prototype dye molecule that is widely used as a fluorescent tag in a variety of biological applications. Firstly, we show that once RhBITC is adsorbed onto Ag nanoaggregates on silica or polystyrene beads, it exhibits not only a strong SERS signal but also a measurable amount of fluorescence, though the fluorescence is mostly quenched by a direct contact of RhBITC with the metal nanoaggregates. Based on this, an advanced sensor operating via both SERS and metal-enhanced fluorescence (MEF) is described. In specific, Raman markers adsorbed on Ag-coated silica beads were stabilized by the deposition of dye-grafted polyelectrolytes. Without being in contact with Ag nanostructures, the fluorescence of dye molecules was greatly amplified by the MEF effect. Accordingly, it was possible to observe both the SERS of marker molecules and the fluorescence of dye molecules simultaneously. This suggests that the MEF signal can be used as an immediate indicator of molecular recognition, while the SERS signals are able to be used subsequently as the signature of specific molecular interactions. Based on this promising result, we have advanced one more step. At the beginning, dye molecule or magnetic nanoparticle-embedded silica beads were fabricated and then Ag nanoparticles were deposited onto them by a simple electroless plating method. After attaching SERS markers, the whole nanostructure was silica-coated by means of a biomimetic silanization. They can be used as core materials of either a dual-tag sensor, operating via both fluorescence and SERS for immunoassays, or a Raman barcode, possessing strong magnetic moments.
금이나 은 나노구조체에 분자가 흡착하면 라만 산란 세기가 백만 배 정도 증가한다는 것을 표면 증강 라만 산란이라 부른다. 본 연구에서는 나노 입자간의 틈새뿐 아니라 평평한 금속과 나노 입자가 이루는 틈새도 가시광선의 전자기장이 크게 증대될 수 있는 SERS 'hot sites'로 작용한다는 것을 실험을 통해 입증하고 맥스웰 방정식을 이용한 이론적 계산으로 그 타당성을 확보하였다. 특히 SERS 활성이 매우 미약한 평평한 백금 위의 유기 단분자막에 대해서도 은 나노 입자로 백금과 나노미터 크기의 틈새 구조를 만들어주면 라만 진동 스펙트럼을 고감도로 얻을 수 있음을 증명하였다. 이러한 나노 틈새에서의 광학 전자기장 증대는 은 나노 입자의 표면 플라스몬과 바닥 금속의 폴라리톤 플라스몬간의 이중극자 짝지음에 기인하며 증대 정도는 나노 입자의 모양과 크기에 따라 달라지고 이에 의해 라만 스펙트럼을 얻을 때의 광원의 파장에도 의존하게 된다. 평평한 백금과 은 나노 입자가 이루는 틈새에서는 광원의 파장이 단파장으로 갈수록 전자기장 증대가 증가함을 실험과 이론적 계산으로 입증하였다. 뿐만 아니라, SERS 활성이 매우 미약한 백금 나노 입자와 은 또는 금과 나노미터 크기의 틈새에서도 고감도 라만 진동 스펙트럼을 얻을 수 있음을 실험과 이론적으로 입증하였다. 라만 신호의 세기는 나노 입자의 크기가 증가할수록 전자기장 증대가 증가함을 실험과 이론적 계산으로 입증하였다.
표면 증강 라만 산란은 매우 민감하면서도 표면 선택성이 크기 때문에 다중 진단 및 바이오센서로서의 응용 가능성이 상당하다. 나노 구조체가 표면 증강 라만 산란 분광법을 매개로 한 생체분자 센서에 효과적으로 응용될 수 있음을 입증하였다. 첫째로, 은 나노 입자가 코팅된 폴리스티렌 및 실리카 비드를 이용하여 표면 증강 라만 산란과 금속 표면에 남아있는 형광에 의한 광발광을 동시에 활용할 수 있음을 아비딘-바이오틴 상호작용을 통해 입증하였다. 둘째, 은 나노 입자가 코팅된 실리카 비드를 이용하여 표면 증강 라만 산란과 금속 증강 형광 현상을 동시에 응용할 기반을 확보하였다. 마지막으로, 기질의 안정성을 높이기 위하여 염료 분자가 포함된 실리카 비드와 자성 입자 위에 실리카막을 제조하여 생체분자 센서와 바코드 물질로 응용될 수 있음을 입증하였다. 이러한 연구 결과는 표면 증강 라만 산란과 형광 이미지에 바탕을 둔 다중 생체분자 인식체의 개발이 가능함을 암시한다.
Language
eng
URI
https://hdl.handle.net/10371/156762

http://dcollection.snu.ac.kr:80/jsp/common/DcLoOrgPer.jsp?sItemId=000000000062
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share