Publications

Detailed Information

A Product-of-Exponentials Kinematic Calibration Algorithm for Serial Robots Using a Laser Pointer : 레이져 포인터를 이용한 Product-of-Exponentials 기반 직렬로봇 기구학적 보정 알고리즘

DC Field Value Language
dc.contributor.advisor박종우-
dc.contributor.authorPubest Detdee-
dc.date.accessioned2019-10-18T15:19:56Z-
dc.date.available2019-10-18T15:19:56Z-
dc.date.issued2019-08-
dc.identifier.other000000156859-
dc.identifier.urihttps://hdl.handle.net/10371/161000-
dc.identifier.urihttp://dcollection.snu.ac.kr/common/orgView/000000156859ko_KR
dc.description학위논문(석사)--서울대학교 대학원 :공과대학 기계항공공학부,2019. 8. 박종우.-
dc.description.abstractThis thesis proposes a kinematic calibration algorithm for serial robots based on a minimal product of exponentials (POE) forward kinematic model. Generally, robot calibration requires the measurement of the end-effector frame (position and orientation), which typically requires special measurement equipment. To avoid using complex measurement devices and to make the calibration easy to implement for even the most general serial robots, in our approach we attach a laser pointer to the end-effector, which is then aimed at a set of fixed known reference points in the plane. Treating the laser as a prismatic joint and the reference point as the tip, kinematic calibration is then performed by minimizing the Cartesian position difference between the measured and estimated Cartesian tip position of the robot. Our method is validated via simulations and experiments involving a seven-dof industrial robot arm.-
dc.description.abstract위 논문은 Minimal POE (product of exponentials) 정기구학 모델에 기반한 직렬로봇 캘리브레이션 알고리즘을 제안한다. 일반적으로 로봇 캘리브레이션은 엔드이펙터 프레임의 위치와 방향을 측정하는 작업을 수행해야 하는데, 이는 특별한 측정장비를 필요로 한다. 복잡한 측정장비의 사용 회피와 다양한 형태의 직렬로봇에 쉽게 응용하기 위해, 이번 논문에서는 엔드이펙터에 레이저포인터를 부착하여 평면 위의 위치가 알려진 참조점들을 추적하여 캘리브레이션을 수행하는 방법을 제시한다. 캘리브레이션은 레이저포인터와 참조점을 각각 선형조인트와 팁으로 생각하여 로봇 팁 위치의 측정값과 추정값의 차이를 최소화하는 과정으로 진행된다. 7자유도 산업용 로봇 팔에 대해 시뮬레이션과 실제 공간에서의 실험을 통해 캘리브레이션 방식을 검증했다.-
dc.description.tableofcontents1 Introduction 1
1.1 Existing Methods 2
1.2 Contributions of This Thesis 4
2 Kinematics Preliminaries 6
2.1 Geometric Background 6
2.1.1 The Lie Group Formulations 6
2.1.2 Screw Motions 8
2.1.3 Adjoint Representation 9
2.2 Forward Kinematics 9
2.2.1 The Product of Exponentials Formula 9
2.2.2 The Minimal Product of Exponentials Formula 11
2.3 Kinematic Error Model 14
2.3.1 Linearizing the Forward Kinematics 15
3 Calibration Methodology 19
3.1 The Concept of the Method 19
3.1.1 Forward Kinematics of a Robot With a Laser Pointer 19
3.1.2 The Error Model for Calibration 20
3.2 Calibration Algorithm 23
3.2.1 The Estimation Method of the Length of the Laser 24
3.2.2 Identification Process 25
4 Experiments 29
4.1 Simulation 1: 6-Dof Robot With Precise Data 29
4.2 Simulation 2: 6-Dof Robot With Noisy Data 31
4.3 Experiments on a 7-Dof Robot 34
5 Conclusion 39
A Appendix 41
A.1 Conversion From dq to dS and dSM [1] 41
Bibliography 43
Abstract 46
-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectKinematic calibration-
dc.subjectproduct of exponentials formula-
dc.subjectlaser pointer.-
dc.subject.ddc621-
dc.titleA Product-of-Exponentials Kinematic Calibration Algorithm for Serial Robots Using a Laser Pointer-
dc.title.alternative레이져 포인터를 이용한 Product-of-Exponentials 기반 직렬로봇 기구학적 보정 알고리즘-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthor뎃디-
dc.contributor.department공과대학 기계항공공학부-
dc.description.degreeMaster-
dc.date.awarded2019-08-
dc.identifier.uciI804:11032-000000156859-
dc.identifier.holdings000000000040▲000000000041▲000000156859▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share