Publications

Detailed Information

Mechanics of noncoplanar mesh design for stretchable electronic circuits

Cited 131 time in Web of Science Cited 146 time in Scopus
Authors

Song, J.; Huang, Y.; Xiao, J.; Wang, S.; Hwang, K.C.; Ko, H.C.; Kim, D.-H.; Stoykovich, M. P.; Rogers, J.A.

Issue Date
2009-07
Publisher
American Institute of Physics
Citation
Journal of Applied Physics, Vol.105 No.12, p. 123516
Abstract
A noncoplanar mesh design that enables electronic systems to achieve large, reversible levels stretchability (>100%) is studied theoretically and experimentally. The design uses semiconductor device islands and buckled thin interconnects on elastometric substrates. A mechanics model is established to understand the underlying physics and to guide the design of such systems. The predicted buckle amplitude agrees well with experiments within 5.5% error without any parameter fitting. The results also give the maximum strains in the interconnects and the islands, as well as the overall system stretchability and compressibility. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3148245]
ISSN
0021-8979
URI
https://hdl.handle.net/10371/164289
DOI
https://doi.org/10.1063/1.3148245
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Materials Science

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share