Publications

Detailed Information

Hydrated Intercalation for High-Performance Aqueous Zinc Ion Batteries

DC Field Value Language
dc.contributor.authorShin, Jaeho-
dc.contributor.authorChoi, Dong Shin-
dc.contributor.authorLee, Hyeon Jeong-
dc.contributor.authorJung, Yousung-
dc.contributor.authorChoi, Jang Wook-
dc.date.accessioned2020-03-16T11:08:22Z-
dc.date.available2020-03-16T11:08:22Z-
dc.date.created2020-02-13-
dc.date.issued2019-04-
dc.identifier.citationAdvanced Energy Materials, Vol.9 No.14, p. 1900083-
dc.identifier.issn1614-6832-
dc.identifier.other90966-
dc.identifier.urihttps://hdl.handle.net/10371/164641-
dc.description.abstractAqueous zinc ion batteries (AZIBs) are steadily gaining attention based on their attractive merits regarding cost and safety. However, there are many obstacles to overcome, especially in terms of finding suitable cathode materials and elucidating their reaction mechanisms. Here, a mixed-valence vanadium oxide, V6O13, that functions as a stable cathode material in mildly acidic aqueous electrolytes is reported. Paired with a zinc metal anode, this material exhibits performance metrics of 360 mAh g(-1) at 0.2 A g(-1), 92% capacity retention after 2000 cycles, and 145 mAh g(-1) at a current density of 24.0 A g(-1). A combination of experiments and density functional theory calculations suggests that hydrated intercalation, where water molecules are cointercalated with Zn ions upon discharge, accounts for the aforementioned electrochemical performance. This intercalation mechanism facilitates Zn ion diffusion throughout the host lattice and electrode-electrolyte interface via electrostatic shielding and concurrent structural stabilization. Through a correlation of experimental data and theoretical calculations, the promise of utilizing hydrated intercalation as a means to achieve high-performance AZIBs is demonstrated.-
dc.language영어-
dc.publisherWiley-VCH Verlag-
dc.titleHydrated Intercalation for High-Performance Aqueous Zinc Ion Batteries-
dc.typeArticle-
dc.contributor.AlternativeAuthor최장욱-
dc.identifier.doi10.1002/aenm.201900083-
dc.citation.journaltitleAdvanced Energy Materials-
dc.identifier.wosid000467132300014-
dc.identifier.scopusid2-s2.0-85061914755-
dc.citation.number14-
dc.citation.startpage1900083-
dc.citation.volume9-
dc.identifier.sci000467132300014-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorChoi, Jang Wook-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusX-RAY-ABSORPTION-
dc.subject.keywordPlusPRUSSIAN BLUE ANALOG-
dc.subject.keywordPlusCATHODE MATERIAL-
dc.subject.keywordPlusHIGH-ENERGY-
dc.subject.keywordPlusCRYSTAL WATER-
dc.subject.keywordPlusV6O13-
dc.subject.keywordPlusDIFFRACTION-
dc.subject.keywordPlusCHEMISTRY-
dc.subject.keywordPlusDIOXIDE-
dc.subject.keywordPlusMG2+-
dc.subject.keywordAuthoraqueous batteries-
dc.subject.keywordAuthordensity functional theory-
dc.subject.keywordAuthorhydrated intercalation-
dc.subject.keywordAuthorvanadium oxide-
dc.subject.keywordAuthorzinc-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Physics, Materials Science

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share