Publications

Detailed Information

Nanoscale Zirconium-Abundant Surface Layers on Lithium- and Manganese-Rich Layered Oxides for High-Rate Lithium-Ion Batteries

DC Field Value Language
dc.contributor.authorAhn, Juhyeon-
dc.contributor.authorKim, Jong Hak-
dc.contributor.authorCho, Byung Won-
dc.contributor.authorChung, Kyung Yoon-
dc.contributor.authorKim, Sangryun-
dc.contributor.authorChoi, Jang Wook-
dc.contributor.authorOh, Si Hyoung-
dc.date.accessioned2020-03-16T11:09:15Z-
dc.date.available2020-03-16T11:09:15Z-
dc.date.created2018-06-29-
dc.date.issued2017-12-
dc.identifier.citationNano Letters, Vol.17 No.12, pp.7869-7877-
dc.identifier.issn1530-6984-
dc.identifier.other38419-
dc.identifier.urihttps://hdl.handle.net/10371/164666-
dc.description.abstractBattery performance, such as the rate capability and cycle stability Of lithium transition metal oxides, is strongly correlated with the surface properties of active particles. For lithium-rich layered oxides, transition metal segregation in the initial state and migration upon cycling leads to a significant structural rearrangement, which eventually degrades the electrode performance. Here, we show that a fine-tuning of surface chemistry on the particular crystal facet can facilitate ionic diffusion and thus improve the rate capability dramatically, delivering a specific capacity of similar to 110 mAh g(-1) at 30C. This high rate performance is realized by creating a nanoscale zirconium-abundant rock-salt-like surface phase epitaxially grown on the layered bulk. This surface layer is spontaneously formed on the Li+ diffusive crystallographic facets during the synthesis and is also durable upon electrochemical cycling. As a result, Li-ions can move rapidly through this nanoscale surface layer over hundreds of cycles. This study provides a promising new strategy for designing and preparing a high-performance lithium-rich layered oxide cathode material.-
dc.language영어-
dc.publisherAmerican Chemical Society-
dc.titleNanoscale Zirconium-Abundant Surface Layers on Lithium- and Manganese-Rich Layered Oxides for High-Rate Lithium-Ion Batteries-
dc.typeArticle-
dc.contributor.AlternativeAuthor최장욱-
dc.identifier.doi10.1021/acs.nanolett.7b04158-
dc.citation.journaltitleNano Letters-
dc.identifier.wosid000418393300097-
dc.identifier.scopusid2-s2.0-85038209816-
dc.citation.endpage7877-
dc.citation.number12-
dc.citation.startpage7869-
dc.citation.volume17-
dc.identifier.sci000418393300097-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorChoi, Jang Wook-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusTRANSITION-METAL OXIDE-
dc.subject.keywordPlusENHANCED ELECTROCHEMICAL PERFORMANCE-
dc.subject.keywordPlusCATHODE MATERIALS-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusLI1.2NI0.2MN0.6O2 CATHODE-
dc.subject.keywordPlusCOMPOSITE CATHODE-
dc.subject.keywordPlusOXYGEN VACANCIES-
dc.subject.keywordPlusCOATING LAYER-
dc.subject.keywordPlusLICOO2 FILMS-
dc.subject.keywordPlusVOLTAGE-FADE-
dc.subject.keywordAuthorLi- and Mn-rich layered oxides-
dc.subject.keywordAuthortransition metal segregations-
dc.subject.keywordAuthorZr-abundant surface layers-
dc.subject.keywordAuthorrate capabilities-
dc.subject.keywordAuthornanoscale-
dc.subject.keywordAuthorcrystallographic facets-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Physics, Materials Science

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share