Browse

Improved electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries

DC Field Value Language
dc.contributor.authorLee, Suk-Woo-
dc.contributor.authorKim, Hyungsub-
dc.contributor.authorKim, Myeong-Seong-
dc.contributor.authorYoun, Hee-Chang-
dc.contributor.authorKang, Kisuk-
dc.contributor.authorCho, Byung-Won-
dc.contributor.authorRoh, Kwang Chul-
dc.contributor.authorKim, Kwang-Bum-
dc.date.accessioned2020-04-25T07:59:05Z-
dc.date.available2020-04-25T07:59:05Z-
dc.date.issued2016-05-
dc.identifier.citationJournal of Power Sources, Vol.315, pp.261-268-
dc.identifier.issn0378-7753-
dc.identifier.other55220-
dc.identifier.urihttp://hdl.handle.net/10371/165048-
dc.description.abstractA citric acid assisted sol-gel method is employed for synthesizing LiNi0.6Co0.2Mn0.2O2 for use as a cathode material in lithium-ion batteries. The effects of heat-treatment temperature and oxygen atmosphere on the structural and electrochemical properties of LiNi0.6Co0.2Mn0.2O2 are investigated, in order to determine optimal conditions for the synthesis of LiNi0.6Co0.2Mn0.2O2 via the citric acid assisted sol-gel method. In particular, the presence of oxygen in the atmosphere effectively leads to a decrease in the degree of cation mixing and the formation of LiOH and Li2CO3 on the surface of LiNi0.6Co0.2Mn0.2O2. Furthermore, heat-treatment in an oxygen atmosphere improves the uniformity of oxidation state of Ni ions between the surface and bulk. LiNi0.6Co0.2Mn0.2O2 synthesized by heat-treatment at 850 degrees C under an oxygen atmosphere shows a discharge capacity of 174 mA h g(-1) and 89% capacity retention after 100 cycles. In addition, it shows high rate capability (i.e., 41% capacity retention at 10 C), which is an improved rate performance over a previous report. The results of this study should provide useful information for the synthesis of Ni-rich layered oxides for lithium ion batteries. (C) 2016 Elsevier B.V. All rights reserved.-
dc.subjectLithium ion batteries-
dc.subjectLiNi0.6CO0.2Mn0.2O2-
dc.subjectCitric acid assisted sol-gel method-
dc.subjectOxygen flowing atmosphere-
dc.subjectHigh performance cathode materials-
dc.subjectEnergy efficiency-
dc.titleImproved electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries-
dc.typeArticle-
dc.contributor.AlternativeAuthor강기석-
dc.identifier.doi10.1016/j.jpowsour.2016.03.020-
dc.citation.journaltitleJournal of Power Sources-
dc.identifier.scopusid2-s2.0-84977511113-
dc.citation.endpage268-
dc.citation.startpage261-
dc.citation.volume315-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0378775316302191?via%3Dihub-
dc.identifier.rimsid55220-
dc.identifier.sci000374810700030-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorKang, Kisuk-
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Material Science and Engineering (재료공학부) Journal Papers (저널논문_재료공학부)
Files in This Item:
There are no files associated with this item.
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse