Publications

Detailed Information

Continuous O-2-Evolving MnFe2O4 Nanoparticle-Anchored Mesoporous Silica Nanoparticles for Efficient Photodynamic Therapy in Hypoxic Cancer

DC Field Value Language
dc.contributor.authorKim, Jonghoon-
dc.contributor.authorCho, Hye Rim-
dc.contributor.authorJeon, Hyejin-
dc.contributor.authorKim, Dokyoon-
dc.contributor.authorSong, Changyeong-
dc.contributor.authorLee, Nohyun-
dc.contributor.authorChoi, Seung Hong-
dc.contributor.authorHyeon, Taeghwan-
dc.date.accessioned2020-04-27T13:29:11Z-
dc.date.available2020-04-27T13:29:11Z-
dc.date.created2018-09-10-
dc.date.issued2017-08-
dc.identifier.citationJournal of the American Chemical Society, Vol.139 No.32, pp.10992-10995-
dc.identifier.issn0002-7863-
dc.identifier.other52239-
dc.identifier.urihttps://hdl.handle.net/10371/165907-
dc.description.abstractTherapeutic effects of photodynamic therapy (PDT) are limited by cancer hypoxia because the PDT process is dependent on O-2 concentration. Herein, we design biocompatible manganese ferrite nanoparticle-anchored mesoporous silica nanoparticles (MFMSNs) to overcome hypoxia, consequently enhancing the therapeutic efficiency of PDT. By exploiting the continuous O-2-evolving property of MnFe2O4 nanoparticles through the Fenton reaction, MFMSNs relieve hypoxic condition using a small amount of nanoparticles and improve therapeutic outcomes of PDT for tumors in vivo. In addition, MFMSNs exhibit T-2 contrast effect in magnetic resonance imaging (MRI), allowing in vivo tracking of MFMSNs. These findings demonstrate great potential of MFMSNs for theranostic agents in cancer therapy.-
dc.language영어-
dc.publisherAmerican Chemical Society-
dc.titleContinuous O-2-Evolving MnFe2O4 Nanoparticle-Anchored Mesoporous Silica Nanoparticles for Efficient Photodynamic Therapy in Hypoxic Cancer-
dc.typeArticle-
dc.contributor.AlternativeAuthor최승홍-
dc.contributor.AlternativeAuthor현택환-
dc.identifier.doi10.1021/jacs.7b05559-
dc.citation.journaltitleJournal of the American Chemical Society-
dc.identifier.wosid000408074800014-
dc.identifier.scopusid2-s2.0-85027419941-
dc.citation.endpage10995-
dc.citation.number32-
dc.citation.startpage10992-
dc.citation.volume139-
dc.identifier.sci000408074800014-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorChoi, Seung Hong-
dc.contributor.affiliatedAuthorHyeon, Taeghwan-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusMANGANESE FERRITE NANOPARTICLES-
dc.subject.keywordPlusTUMOR OXYGENATION-
dc.subject.keywordPlusFENTON REACTION-
dc.subject.keywordPlusIN-VIVO-
dc.subject.keywordPlusCELLS-
dc.subject.keywordPlusCHEMOTHERAPY-
dc.subject.keywordPlusENHANCE-
dc.subject.keywordPlusRESISTANCE-
dc.subject.keywordPlusDOTS-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Chemistry, Materials Science

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share