Publications

Detailed Information

Optimization Analysis for Long-term Electricity Planning in Java Bali Power System in Indonesia

DC Field Value Language
dc.contributor.advisorYeonbae Kim-
dc.contributor.authorEtis Dwi Meilandari-
dc.date.accessioned2020-05-07T03:50:40Z-
dc.date.available2020-05-07T03:50:40Z-
dc.date.issued2020-
dc.identifier.other000000159405-
dc.identifier.urihttp://dcollection.snu.ac.kr/common/orgView/000000159405ko_KR
dc.description학위논문(석사)--서울대학교 대학원 :공과대학 협동과정 기술경영·경제·정책전공,2020. 2. Yeonbae Kim.-
dc.description.abstractIndonesias power system relies heavily on fossil fuels as an energy source for power generation. Meanwhile, the government of Indonesia is committed to reducing 29% of greenhouse gas (GHG) emissions in order to achieve a 23% and 31% renewable energy share in the overall energy sector by 2025 and 2050, respectively. Moreover, on the demand side, electricity consumption in Indonesia is currently dominated by the household sector, and most of the households are still not aware of the need to follow energy conservation policies. This study has four scenarios: The Business-as-Usual Scenario, the Renewable Energy Scenario, the Demand-Side Management Scenario, and the Green Scenario. This study aims to analyze the impact of renewable energy penetration and energy efficiency implementation in the household sector in order to provide alternative solutions and recommendations to develop long-term electricity plans by using the LEAP optimization model from 2018 as the base year to 2050 as the target year, specifically for the Java-Bali power system. The study found that the high penetration target of renewable energy could result in reducing the domination of fossil fuel-based power generation by 2050. Implementing energy efficiency programs could reduce the total investment costs over the planning horizon period, since such policies are estimated to result in reducing overall electricity consumption by 4% by 2050, from 909,6 TWh to 870.6 TWh. However, the high penetration of renewable energy resulted in high investment and production costs during the planning horizon period. Nevertheless, the higher utilization of renewable energy and the implementation of energy efficiency programs would have a significant impact on reducing CO2 emissions.-
dc.description.abstract인도네시아 전력 시스템은 발전을 위한 에너지원으로 화석 연료에 크게 의존한다. 한편, 인도네시아 정부는 2025년과 2050년까지 전체 에너지 분야에서 각각 23%와 31%의 재생에너지 점유율을 달성하기 위해 29%의 온실효과가스(GHG)의 배출량을 줄이겠다는 입장이다. 더욱이 수요측면에서는 현재 인도네시아의 전력소비는 가계 부문이 장악하고 있는데, 대부분의 가구는 여전히 에너지 절약 정책을 실행해야 할 필요성을 인식하지 못하고 있다. 본 연구는 네 가지 시나리오를 분석 했는데, 그것은 통상적 시나리오, 재생 가능한 에너지 시나리오, 수요 관리 시나리오, 그리고 녹색 시나리오이다. 본 연구는 자바-발리 전력 시스템을 대상으로 재생 에너지 보급 및 가구 분야 에너지 효율 구현의 영향을 분석, 장기 전력 계획을 개발을 위한 대체 해결책과 권고안을 제공하기 위해 2018년을 기준 연도로 한 LEAP 최적화 모델을 2050년까지 분석한다. 본 연구는 재생 에너지의 높은 목표치가 2050년까지 화석 연료 기반 발전의 우위를 감소시킬 수 있다는 것을 발견했다. 또한, 에너지 효율 프로그램을 시행하면 2050년까지 전체 전력 소비량이 909,6 TWh에서 870,6 TWh로 4% 정도 감소하기 때문에, 연구 기간 동안 총 투자 비용도 감소할 수 있을 것으로 추정된다. 단, 재생 에너지의 높은 침투율은 연구 기간 동안 높은 투자와 생산 비용을 초래했다. 그럼에도 불구하고, 재생 에너지의 더 높은 이용률과 에너지 효율 프로그램의 구현은 CO2 배출 감소에 큰 영향을 미칠 것이다.-
dc.description.tableofcontentsChapter 1 Introduction 1
1.1 Research Motivation 1
1.2 Research Question 4
1.3 Research Objective 4
1.4 Thesis Structure 4

Chapter 2 Research Background 7
2.1 Overview of the Indonesian Energy Sector 7
2.1.1 Indonesias Primary Energy Supply 7
2.2 Overview of the Indonesian Energy Sector 14
2.2.1 Indonesian Power System 14
2.2.2 Java Bali Power System 16
2.3 Indonesian Energy and Electricity Policy 18
2.3.1 National Energy Policy 18

Chapter 3 Literature Review 20
3.1 Energy Models 20
3.1.1 The Analytical Approach: Bottom-up Vs Top-Down Models 22
3.2 Previous Studies 24

Chapter 4 Methodology, Data and Scenario Development 29
4.1 LEAP Model 29
4.2 The Calculation of LEAP Model 30
4.3 Energy Efficiency Model 35
4.4 Scenario Development and Data Requirements 37
4.4.1 The Current Accounts 37
4.4.2 Business as Usual Scenario 46
4.4.3 Renewable Energy Scenario 47
4.4.4 Demand Side Management Scenario 47
4.4.5 Green Scenario 48

Chapter 5 Result and Discussion 49
5.1 Results 49
5.1.1 Business as Usual Scenario 49
5.1.2 Renewable Energy Scenario 57
5.1.3 Demand Side Management Scenario 63
5.1.4 Green Scenario 70
5.2 Discussion 76
5.2.1 Electricity Demand Projection 76
5.2.2 Capacity Expansion of Power Generation 76
5.2.3 Electricity Generation Mix 80
5.2.4 Investment Cost 84
5.2.5 Production Cost of Power Generation 86
5.2.6 CO2 emissions 89

Chapter 6 Conclusions 90
6.1 Overall Conclusion 90
6.2 Policy Implication and Recommendations 98
6.3 Study Limitation and Future Work 99

Appendix 105
Appendix 1: Coal Resources and Reserves in 2018 105
Appendix 2: Electricity Consumption in Indonesia by Sector (TWh) 108
Appendix 3: Electricity Consumer in Indonesia by Sector (Million) 109
Appendix 4: Load Shape of Java-Bali Power System in 2016 110
Appendix 5: Load Shape of Java Bali Power Sytem in 2017 111
Appendix 6: The Projection of Total Household (Million) 112
Appendix 7: The Electricity Demand Projection (TWh) 118
Appendix 8: The Planned Retirement of Power Generation (MW) 122
Appendix 9: Annual Capacity Expansion in Business as Usual Scenario (GW) 126
Appendix 10: Annual Investment Cost in Business as Usual Scenario (Billion US$) 130
Appendix 11: Annual Production Cost in Business as Usual Scenario (Billion US$) 134
Appendix 12: Annual Amount of CO2 Emissions in Business as Usual Scenario (Million Metric Tonnes) 138
Appendix 13: Annual Capacity Expansion in Renewable Energy Scenario (GW) 142
Appendix 14: Annual Investment Cost in Renewable Energy Scenario (Billion US$) 146
Appendix 15: Annual Production Cost in Renewable Energy Scenario (Billion US$) 150
Appendix 16: Annual Amount of CO2 Emissions in Renewable Energy Scenario (Million Metric Tonnes) 154
Appendix 17: Annual Capacity Expansion in Demand Side Management Scenario (GW) 158
Appendix 18: Annual Investment Cost in Demand Side Management Scenario (Billion US$) 162
Appendix 19: Annual Production Cost in Demand Side Management Scenario (Billion US$) 166
Appendix 20: Annual Amount of CO2 Emissions in Demand Side Management Scenario (Million Metric Tonnes) 170
Appendix 21: Annual Capacity Expansion in Green Scenario (GW) 174
Appendix 22: Annual Investment Cost in Green Scenario (Billion US$) 178
Appendix 23: Annual Production Cost in Green Scenario (Billion US$) 182
Appendix 24: Annual Amount of CO2 Emissions in Green Scenario (Million Metric Tonnes) 186
Appendix 25: Annual Capacity (GW) by Scenario 190

Abstract (Korean) 192
Acknowledgments 194
-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subject.ddc658.514-
dc.titleOptimization Analysis for Long-term Electricity Planning in Java Bali Power System in Indonesia-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthor메이란다리-
dc.contributor.department공과대학 협동과정 기술경영·경제·정책전공-
dc.description.degreeMaster-
dc.date.awarded2020-02-
dc.identifier.uciI804:11032-000000159405-
dc.identifier.holdings000000000042▲000000000044▲000000159405▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share