Publications

Detailed Information

Prediction of rock cutting performance and abrasiveness considering dynamic properties at intermediate strain rate : 중간변형률속도에서의 동적 물성을 고려한 암석 절삭성능 및 마모율 예측

DC Field Value Language
dc.contributor.advisorSeokwon Jeon-
dc.contributor.authorYudhidya Wicaksana-
dc.date.accessioned2020-05-19T08:04:59Z-
dc.date.available2020-05-19T08:04:59Z-
dc.date.issued2020-
dc.identifier.other000000159664-
dc.identifier.urihttps://hdl.handle.net/10371/168053-
dc.identifier.urihttp://dcollection.snu.ac.kr/common/orgView/000000159664ko_KR
dc.description학위논문(박사)--서울대학교 대학원 :공과대학 에너지시스템공학부,2020. 2. Seokwon Jeon.-
dc.description.abstractThe application of mechanized excavation has been widely used in various civil and mining projects. It has significant advantages over the drill-and-blast method concerning continuity, safety, stability, and environmental friendliness. With the global increase of safety and environmental awareness, the demand for mechanized excavation has been increasing steadily, especially in urban tunneling.
Rock mechanical excavation involves a dynamic process where the rock experiences dynamics loading induced by cutting tools. And, many previous studies showed that the strength of rock under dynamic loading is higher than those under static loading. However, the dynamic properties of rock have not been considered in the existing mechanical excavation prediction models. This issue will potentially cause misleading results in performance prediction and machine selection in a project.
In this study, the mechanical cutting problem from a dynamic perspective was investigated. First of all, it was shown that the loading rate of mechanical cutting falls in the intermediate strain rate (ISR), which is higher than the quasi-static rate and lower than the high strain rate (HSR). Accordingly, a series of tests were carried out to obtain dynamic mechanical properties by using a non-explosive powder reaction loading apparatus that was able to generate loading in the ISR range. The results of the dynamic mechanical properties at the ISR range are discussed.
Further, a laboratory linear cutting test was carried out with several cutting conditions. Besides, numerical simulations using the finite element method, considering static and dynamic property sets, were performed. The cutter forces and specific energy from the numerical simulation were validated against laboratory linear cutting tests. It was found that numerical simulation using dynamic input parameters fit better with the laboratory experiment than the simulation using quasi-static input parameters. Additionally, prediction models involving dynamic properties based on multiple linear regression were also derived. The performance of the models was tested in a given database, and it shows that the proposed models performed better than some theoretical models.
Finally, the abrasiveness test under the dynamic mode, called the Gouging abrasiveness test, was also considered. The test allows the pin to interact with the rock surface in a high-speed impact, which imitates the process that is experienced by cutting tools in the field. A comparison with Cerchar abrasiveness test was discussed covering several aspects, including their relationship with geomechanical properties and groove profiles.
-
dc.description.abstract기계식 굴착공법은 다양한 토목, 자원개발 공사에서 사용되고 있다. 기계식 굴착공법은 발파공법과 비교하여 굴착공사의 연결성, 안정성, 안전성, 환경피해 측면에서 장점을 가진다. 또한 안전과 환경피해에 대한 관심이 커짐에 따라 도심지 터널공사를 중심으로 기계식 굴착공법의 수요는 지속적으로 증가하고 있다.
암석의 기계굴착에서는 굴착도구를 통해 암석에 동적인 하중을 가하기 때문에 암석의 동적거동이 고려되어야 한다. 또한 많은 선행연구들에서는 암석의 동적인 하중하에서의 강도는 정적 하중에 비해 높게 나타남을 보고하고 있다. 그러나 현재까지 암석의 굴착효율을 평가하기 위한 예측모델에서는 암석의 동적물성을 고려하지 않고 있다. 이것은 잠재적으로 장비의 굴착 효율을 평가하거나 장비를 선정하는데 있어 잘못된 정보를 도출 할 수 있다.
본 연구에서는 암석의 동적 거동측면에서의 암석의 절삭 문제를 고찰하였다. 먼저 기계굴착에서의 암석의 변형 속도는 준정적 변형률 속도와 높은 변형률 속도의 중간에 해당하는 중간변형률속도에 속하는 것을 알 수 있었다. 그리하여 비 폭발성 분말을 이용한 하중재하장치를 이용하여 중간변형률 속도의 하중을 모사하고 중간변형률에서의 암석의 다양한 물성을 획득하였다. 또한 중간변형률 속도에서 획득된 암석의 동적물성에 대하여 고찰하였다.
다양한 절삭조건하에서 선형절삭시험을 수행하였다. 또한 암석의 정적인 물성과 동적인 물성을 적용한 유한요소 해석기법을 통하여 수치해석적으로 암석의 절삭과정을 모사하였다. 수치해석으로부터 획득한 커터작용력과 비에너지를 선형절삭시험결과를 통해 검증하였다. 수치해석결과는 준 정적인 하중 하에서 획득된 암석의 물성을 사용하는 것 보다 동적인 물성을 사용하는 것이 실험결과와 더 일치하는 결과를 보였다. 또한 암석의 동적물성을 이용하여 암석의 절삭성능을 예측하기 위한 예측모델을 도출하였다. 도출된 예측 모델은 선행연구들로부터 획득한 데이터를 활용하여 검증하였고, 일련의 이론모델보다 향상된 예측결과를 보였다.
마지막으로 동적인 조건에서 암석의 마모시험 (가우징 마모시험) 을 수행하였다. 이 시험법은 금속핀을 암석표면에 접촉시켜 빠른 속도로 긁는 시험으로, 절삭도구가 실제 현장에서 굴착하는 환경을 모사할 수 있다. 가우징 마모시험 으로부터 획득한 결과를 세르샤 마모시험 결과와 비교하여 고찰하였고, 두 시험결과 사이의 상관관계를 암석의 역학적 물성과 마모시험 으로부터 생성된 암석의 표면정보 등을 통하여 분석하였다.
-
dc.description.tableofcontents1. Introduction 1
1.1 Background 1
1.2 Objectives of the Study 5
1.3 Scope of the Study 6

2. Literature Review 8
2.1 Rock Breakage Mechanism by a Rock Cutting Tool 8
2.2 Theoretical and Empirical Models for Rock Cutting 10
2.3 Loading Classification over Strain Rate 13
2.4 Intermediate Strain Rate (ISR) Loading 14
2.4.1 Intermediate Strain Rate Loading Techniques 15
2.4.2 Dynamic Rock Behavior under Compression in Intermediate Strain Rate 23
2.4.3 Dynamic Rock Behavior under Tension in Intermediate Strain Rate 29
2.4.4 Rock Fragmentation on Dynamic Loading Condition 35
2.5 Rock Abrasiveness Test 37
2.6 Explicit Dynamic Simulation using ANSYS AUTODYN® 41
2.6.1 Explicit Transient Dynamics 42
2.6.2 Explicit Time Integration 43

3. Dynamic Test of Rock 45
3.1 Introduction to Dynamic Rock Test 45
3.2 Non-Explosive Reaction-Driven Loading Apparatus 45
3.3 Test Setup 49
3.3.1 Test Type 49
3.3.2 Rock Specimen 50
3.3.3 Test Scenario 52
3.4 Test and Results 53
3.4.1 Uniaxial Compression 53
3.4.2 Brazilian Tension 56
3.4.3 Mode-I Fracture Toughness 60
3.4.4 Punch Shear 64
3.5 Numerical Modeling of Dynamic Rock Test 68
3.5.1 Material Model of Dynamic Rock Test 68
3.5.2 Geometry and Boundary Conditions of the Dynamic Rock Test Model 70
3.5.3 Results of Dynamic Rock Test Modeling 74
3.6 Discussion on Dynamic Rock Properties 79
3.6.1 Rock Failure Under Dynamic Loading 79
3.6.2 Effect of Strain Rate on Mechanical Properties of Rock 81
3.6.3 Critical Strain Rate 94
3.6.4 Effect of Strain Rate on Elastic Properties 96

4. Rock Cutting Test 99
4.1 Introduction to Rock Cutting Test 99
4.2 Small-Scale Linear Cutting Machine 99
4.3 Linear Cutting Test 101
4.3.1 Test Specimen for Linear Cutting Test 101
4.3.2 Procedure of Linear Cutting Test 102
4.3.3 Results of Linear Cutting Test 103
4.4 Numerical Modeling of Linear Cutting Test 110
4.4.1 Material Model of Linear Cutting Test 110
4.4.2 Geometry and Boundary Conditions of Linear Cutting Test Model 112
4.4.3 Results of Linear Cutting Test Modeling 112
4.5 Discussion on the Linear Cutting Test: Laboratory vs. FEM Simulation 116
4.6 Cutting Force Prediction Model 123
4.6.1 Database and the Conversion to Dynamic Strength of Rock 123
4.6.2 Multiple Linear Regression Analysis 124
4.6.3 Performance of the Proposed Prediction Models 129
4.7 Strain Rate Determination During Cutting Process 137
4.7.1 Calculation from the Technical Data Sheet of the Machine 137
4.7.2 Direct Measurement from Linear Cutting Test 139
4.7.3 Numerical Modeling of Linear Cutting Test 147
4.7.4 Recapitulation of the Strain Rate Determination in Cutting Process 151

5. Abrasiveness Test 153
5.1 Introduction to Abrasiveness Test 153
5.2 Preparation of the Testing Apparatus 154
5.2.1 Strain Rate Determination in the Charpy Test 154
5.2.2 Impact Testing Machine Modification 157
5.3 Rock Sample 158
5.4 Wear Tool (Pin) 162
5.5 Test Procedure 162
5.5.1 Gouging Abrasiveness Test 162
5.5.2 Cerchar Abrasiveness Test 165
5.6 Results and Discussion 167
5.6.1 Equivalent Quartz Content 167
5.6.2 Effect of Geomechanical Properties of Rock 172
5.6.3 Relationship Between CAI and Gi 180
5.6.4 Groove Profile 182
5.6.5 Gouging and Cerchar Tests in an Identical Scratch Distance 185

6. Conclusions 188
Reference 192
초록 (Abstract in Korean) 205
Acknowledgment 207
-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subject.ddc622.33-
dc.titlePrediction of rock cutting performance and abrasiveness considering dynamic properties at intermediate strain rate-
dc.title.alternative중간변형률속도에서의 동적 물성을 고려한 암석 절삭성능 및 마모율 예측-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthor유드히드야-
dc.contributor.department공과대학 에너지시스템공학부-
dc.description.degreeDoctor-
dc.date.awarded2020-02-
dc.contributor.majorRock mechanics and rock engineering-
dc.identifier.uciI804:11032-000000159664-
dc.identifier.holdings000000000042▲000000000044▲000000159664▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share