Publications

Detailed Information

Stress relaxation-dependent piezoresistive behavior of carbon nanotube/polymer composite : 탄소나노튜브/고분자 복합재료에서의 응력 완화에 따른 저항 변화

DC Field Value Language
dc.contributor.advisor유웅열-
dc.contributor.author심원보-
dc.date.accessioned2020-10-13T02:46:01Z-
dc.date.available2020-10-13T02:46:01Z-
dc.date.issued2020-
dc.identifier.other000000162336-
dc.identifier.urihttps://hdl.handle.net/10371/169216-
dc.identifier.urihttp://dcollection.snu.ac.kr/common/orgView/000000162336ko_KR
dc.description학위논문 (박사) -- 서울대학교 대학원 : 공과대학 재료공학부, 2020. 8. 유웅열.-
dc.description.abstractCarbon nanotubes (CNTs) have been investigated for many structural and electronic applications due to their excellent electrical and mechanical properties. Many studies have shown that CNT can be used as a reinforcement filler for polymer composites. In addition, CNT/polymer composites show the piezoresistive behavior, which makes them potentially applicable to strain sensing applications, e.g., an adhesive for structural health monitoring purposes. This study aimed to study the resistance changing behavior of CNT/polymer composites during stress relaxation and develop a new method of characterizing the residual stress. To achieve goals, a series of research was carried out as follows.
Predicting the mechanical behavior of adhesives is important, because adhesives strongly influence the strength and reliability of adhesive–adherend structures. The rate and temperature dependent mechanical behavior of an adhesive, including its failure strength was studied. We carried out a simulation of the mechanical behavior of an adhesive, including its failure strength, using Schapery's nonlinear viscoelastic model. A detailed derivation of the nonlinear viscoelastic model for 3D implementation in finite-element software was presented. Experimental procedures for obtaining the model parameters from dynamic mechanical testing of lap-joint specimens were proposed. Strain-rate dependent failure criterion was employed using the shift factor and experimental lap shear tests at different strain rates to calculate the failure strain at different temperature. Then, the mechanical behavior of the adhesive in the adhesive joint at different rates and temperatures until its failure was simulated. The simulation results were compared with the experiments, demonstrating the validity of the current approach.
The electrical properties of CNT/graphene hybrids were studied. In this study, a predictive model that quantitatively describes the synergistic behavior of the CNTs and graphene to the electrical conductivity of CNT/graphene hybrids was proposed. The number of CNT-to-CNT, graphene-to-graphene and graphene-to-CNT contacts were calculated assuming random distribution of particles in the hybrids. The calculation showed optimum electrical conductivity at certain compositions. The calculation result was validated by measuring electrical conductivity of inkjet-printed CNT/graphene hybrids.
Lastly, the piezoresistive behavior of CNT/polymer composites during stress relaxation was studied. In this study, the dependence of CNT aspect ratio and concentration on the resistance change during stress relaxation was studied. The resistance was measured during stress relaxation of CNT/epoxy composites. The resistance change varied according to different CNT aspect ratio and concentrations. To explain this behavior, a simulation model that was based on a new resistor model and the number of contacts between CNTs within tunneling distance was developed. This model can also explain the dependence of CNT aspect ratio and concentration on the resistance change during tensile test. CNT composite was used as an adhesive in this work, the residual stress of which was measured during cooling. The normal stress formed in the adhesive, which was obtained from numerical simulation result using viscoelastic model, showed a good agreement with experiments, suggesting that CNT composites can be used as an adhesive that can detect the residual stress change and can monitor structural health of joints.
-
dc.description.abstract탄소나노튜브(CNT)는 우수한 전기적 및 기계적 특성으로 인해 많은 구조적 및 전자적 응용 분야에서 연구되었다. CNT가 강화제로서 복합재의 충전제로서 사용될 수 있음이 많은 연구에서 드러났다. CNT/고분자 복합재는 압 저항 거동을 보이며 변형 감지 분야에 적용 가능하다. CNT 복합재는 구조적 건강 상태 모니터링 목적을 위한 접착제로 사용될 것으로 기대된다. 이 연구에서는 CNT 복합재의 응력 완화 동안 저항 변화 거동을 실험적, 이론적으로 나타내고 이를 활용하여 잔류응력을 나타내는 것을 목표로 하였다. 이 목적을 달성하기 위해 다음과 같은 연구들이 진행되었다.
접착제의 기계적 거동을 예측하는 것은 중요하다. 왜냐하면 접착제는 접착구조의 파괴강도 및 신뢰성에 큰 영향을 주기 때문이다. 파단 강도 등 접착제의 기계적 거동에 대한 속도 및 온도 의존성을 연구하였다. ABAQUS 소프트웨어에서 3D 구현을 위한 Schapery의 비선형 점탄성 모델을 도출하였고 이를 이용하여 접착제의 거동을 해석하였다. 모델의 파라미터들을 구하기 위해 기계적 분석(DMA)와 랩 조인트 시편의 응력완화 시험을 하였다. 변형 속도에 따라 파괴할 때까지의 변형률이 다른 특성을 해석에 적용하였다. 여기에는 쉬프트 팩터와 여러 온도, 변형 속도에서의 랩 조인트 시편의 시험 결과를 사용하였다. 다양한 변형속도, 온도에서 접착제가 파괴가 일어날 때까지의 접착제의 거동을 시뮬레이션으로 나타냈고 실험과 비교하여 이 접근 방법이 유효하다는 것을 보였다.
CNT/그래핀 하이브리드의 전기적 특성이 연구되었다. 이 연구에서, CNT/그래핀 하이브리드에서 CNT와 그래핀이 시너지 효과를 내는 것을 정량적으로 예측할 수 있는 모델을 제안하였다. CNT-CNT, 그래핀-그래핀, 그래핀-CNT의 접촉점 수는 하이브리드에서 입자가 랜덤하게 분포되어 있다고 가정하고 계산하였다. 이 계산 결과는 특정 CNT/그래핀 비율에서 최적의 전기전도도가 나온다는 것을 보여주었다. 이 계산 결과는 잉크젯 프린팅으로 만든 CNT/그래핀 하이브리드 필름의 전기전도도를 측정하여 실험적으로 입증되었다.
마지막으로 응력 완화가 일어나는 동안 CNT/고분자 복합재의 전기전도도 변화에 대해 연구하였다. 이 저항 변화가 CNT 종횡비, 농도와 어떤 연관이 있는지에 대해 연구하였다. CNT/에폭시 복합재를 만들어 응력 완화 시험을 하면서 저항을 동시에 측정하였다. CNT 종횡비와 농도에 따라 저항 변화 거동이 달라지는 것을 확인하였다. 이 거동을 설명하기 위해 새로운 저항 모델과 터널링 거리 내의 CNT 사이 접촉점 수를 기반으로 한 시뮬레이션 모델을 개발하였다. 이 모델을 사용하여 인장 시험하는 동안 저항 변화가 CNT 종횡비, 농도에 따라 달라지는 현상 또한 설명할 수 있었다. 또한 CNT 복합재를 접착제로 사용하여 온도를 낮추는 동안 생기는 잔류 응력을 측정하는 데에 사용하였다. 점탄성 모델을 사용한 시뮬레이션 결과에서 나온 접착제에 발생한 응력 변화는 실험에서 측정한 저항 변화와 비슷한 경향을 보였다. 이를 통해 CNT 복합재를 사용하여 접착제의 구조 안정성 모니터링과 잔류 응력 변화를 측정하는 데에 활용할 수 있다는 것을 보였다.
-
dc.description.tableofcontents1. Introduction. 1
1.1. Carbon nanotube (CNT).. 1
1.2. Piezoresistive behavior of CNT composite.. 5
1.3. Research objectives. 10
2. Nonlinear viscoelastic property of adhesive 13
2.1. Introduction 13
2.2. Experimental 16
2.2.1. Materials and specimen. 16
2.2.2. Characterization.. 16
2.2.2.1. Dynamic mechanical analysis 16
2.2.2.2. Single lap shear test. 16
2.3. Model formulation and implementation.. 18
2.3.1. One-dimensional nonlinear viscoelastic model. 18
2.3.2. Three-dimensional nonlinear viscoelastic model . 20
2.3.3. Algorithm to update stress and tangent stiffness.. 21
2.3.4. Implementation of failure criteria... 27
2.3.5. Parameters for numerical simulation. 29
2.4. Experimental results. 30
2.4.1. Dynamic mechanical analysis. 30
2.4.2. Stress relaxation tests. 32
2.4.3. Lap shear test at a constant strain rate 37
2.5. Numerical simulation. 40
2.5.1. Geometry.. 40
2.5.2. Simulation results (stress relaxation test).. 41
2.5.2. Simulation results (lap shear test until failure).. 44
2.5.3. Hyperelastic model combined with Prony series. 49
2.6. Summary.. 55
3. CNT/graphene hybrids. 56
3.1. Introduction. 56
3.2. Experimental 59
3.2.1. Materials and ink formulation. 59
3.2.2. Characterization and inkjet printing 59
3.3. Predictive model for electrical conductivity of CNT/graphene hybrids. 63
3.3.1. Relationship between conductivity and the number of contacts 63
3.3.2. Estimating the number of contacts 64
3.3.2.1. Estimating the number of CNT-CNT contacts 64
3.3.2.2. Estimating the number of graphene-graphene contacts 68
3.3.2.3. Estimating the number of CNT-graphene contacts 70
3.3.2.4. Total number of contacts in CNT-graphene hybrids 72
3.3.3. Number of contacts for hybrids composed of different particle sizes. 78
3.3.4. Calculation of percolation threshold for CNT assembly. 83
3.4. Experimental results 86
3.4.1. Characterization of the CNT/graphene hybrid inks. 86
3.4.2. Morphology of the inkjet-printed CNT/graphene hybrids. 91
3.4.3. Electrical conductivity of CNT/graphene hybrids. 93
3.5. Other examples using the model 101
3.5.1. Application of the model in SWNT/MWNT hybrid 101
3.5.2. Predicted electrical conductivity of SWNT/MWNT hybrid. 101
3.5.3. Experimental result of the SWNT/MWNT hybrid 105
3.6. Summary 108
4. Piezoresistive behavior of CNT composites. 109
4.1. Introduction 109
4.2. Experimental 111
4.2.1. Materials and specimen. 111
4.2.2. Characterization of CNT dispersion.. 112
4.2.3. Resistance measurement during mechanical tests 113
4.3. Experimental results... 114
4.3.1. Dispersion of CNTs in the epoxy resin.. 114
4.3.2. Electrical conductivity of the CNT composites. 117
4.3.3. Resistance change during stress relaxation test. 119
4.3.4. Resistance change during tensile test. 122
4.4. Model. 126
4.4.1. Resistor model. 126
4.4.2. Number of contacts between CNTs . 127
4.4.3. Calculation of tunneling resistance change 128
4.4.4. Effect of aspect ratio and concentration on resistance change. 133
4.5. Application in residual stress measurement 136
4.5.1. Experimental procedure. 136
4.5.2. Experimental results. 139
4.5.2.1. Resistance change of adhesive joint during cooling. 139
4.5.2.2. Material property measured for numerical simulation 142
4.5.3. Simulation result of residual stress in the adhesive joint. 143
4.6. Summary. 149
5. Conclusion. 150
Reference. 153
Korean abstract. 168
-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectCNT/polymer composite-
dc.subjectPiezoresistivity-
dc.subjectviscoelasticity-
dc.subjectstress relaxation-
dc.subjectelectrical conductivity-
dc.subject탄소나노튜브/고분자 복합재-
dc.subject압저항 현상-
dc.subject점탄성-
dc.subject응력 완화-
dc.subject전기전도도-
dc.subject.ddc620.1-
dc.titleStress relaxation-dependent piezoresistive behavior of carbon nanotube/polymer composite-
dc.title.alternative탄소나노튜브/고분자 복합재료에서의 응력 완화에 따른 저항 변화-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorWonbo Shim-
dc.contributor.department공과대학 재료공학부-
dc.description.degreeDoctor-
dc.date.awarded2020-08-
dc.identifier.uciI804:11032-000000162336-
dc.identifier.holdings000000000043▲000000000048▲000000162336▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share