Publications

Detailed Information

Design of a Controller PHY for High-Capacity DRAM with Pulse-Based Feed-Forward Equalizer : 펄스 기반 피드 포워드 이퀄라이저를 갖춘 고용량 DRAM을 위한 컨트롤러 PHY 설계

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

고형준

Advisor
김수환
Issue Date
2020
Publisher
서울대학교 대학원
Keywords
DRAM interfacefeed-forward equalizerglitch-free digitally-controlled delay linememory controllerpulse-shrinking delay linequadrature error correctorreplica serializerDRAM 인터페이스피드 포워드 이퀄라이저메모리 컨트롤러펄스 수축 지연 라인복제 직렬 변환기직교 오차 보정기
Description
학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·정보공학부, 2020. 8. 김수환.
Abstract
A controller PHY for managed DRAM solution, which is a new memory structure to maximize capacity while minimizing refresh power, is presented. Inter-symbol interference is critical in such a high-capacity DRAM interface in which many DRAM chips share a command/address (C/A) channel. A pulse-based feed-forward equalizer (PB-FFE) is introduced to reduce ISI on a C/A channel. The controller PHY supports all the training sequences specified in the DDR4 standard. A glitch-free DCDL is also adopted to perform link training efficiently and to reduce training time.
The DQ transmitter adopts quarter-rate architecture to reduce output latency. For the quarter-rate transmitters in DQ, we propose a quadrature error corrector (QEC), in which clock signal phase errors are corrected using two replicas of the 4:1 serializer of the output stage. Pulse shrinking is used to compare and equalize the outputs of these two replica serializers.
A controller PHY was fabricated in 55nm CMOS. The PB-FFE increases the timing margin from 0.23UI to 0.29UI at 1067Mbps. At 2133Mbps, the read timing and voltage margins are 0.53UI and 211mV after read training, and the write margins are 0.72UI and 230mV after write training.
To validate the QEC effectiveness, a prototype quarter-rate transmitter, including the QEC, was fabricated to another chip in 65nm CMOS. Adopting our QEC, the experimental results show that the output phase errors of the transmitter are reduced to a residual error of 0.8ps, and the output eye width and height are improved by 84% and 61%, respectively, at a data-rate of 12.8Gbps.
본 연구에서 용량을 최대화하면서도 리프레시 전력을 최소화할 수 있는 새로운 메모리 구조인 관리형 DRAM 솔루션을 위한 컨트롤러 PHY를 제시하였다. 이와 같은 고용량 DRAM 인터페이스에서는 많은 DRAM 칩이 명령 / 주소 (C/A) 채널을 공유하고 있어서 심볼 간 간섭이 발생한다. 본 연구에서는 이러한 C/A 채널에서의 심볼 간 간섭을 줄이기 위해 펄스 기반 피드 포워드 이퀄라이저 (PB-FFE)를 채택하였다. 또한 본 연구의 컨트롤러 PHY는 DDR4 표준에 지정된 모든 트레이닝 시퀀스를 지원한다. 링크 트레이닝을 효율적으로 수행하고 트레이닝 시간을 줄이기 위해 글리치가 발생하지 않는 디지털 제어 지연 라인 (DCDL)을 채택하였다.
컨트롤러 PHY의 DQ 송신기는 출력 대기 시간을 줄이기 위해 쿼터 레이트 구조를 채택하였다. 쿼터 레이트 송신기의 경우에는 직교 클럭 간 위상 오류가 출력 신호의 무결성에 영향을 주게 된다. 이러한 영향을 최소화하기 위해 본 연구에서는 출력 단의 4 : 1 직렬 변환기의 두 복제본을 사용하여 클록 신호 위상 오류를 수정하는 QEC (Quadrature Error Corrector)를 제안하였다. 복제된 2개의 직렬 변환기의 출력을 비교하고 균등화하기 위해 펄스 수축 지연 라인이 사용되었다.
컨트롤러 PHY는 55nm CMOS 공정으로 제조되었다. PB-FFE는 1067Mbps에서 C/A 채널 타이밍 마진을 0.23UI에서 0.29UI로 증가시킨다. 읽기 트레이닝 후 읽기 타이밍 및 전압 마진은 2133Mbps에서 0.53UI 및 211mV이고, 쓰기 트레이닝 후 쓰기 마진은 0.72UI 및 230mV이다.
QEC의 효과를 검증하기 위해 QEC를 포함한 프로토 타입 쿼터 레이트 송신기를 65nm CMOS의 다른 칩으로 제작하였다. QEC를 적용한 실험 결과, 송신기의 출력 위상 오류가 0.8ps의 잔류 오류로 감소하고, 출력 데이터 눈의 폭과 높이가 12.8Gbps의 데이터 속도에서 각각 84 %와 61 % 개선되었음을 보여준다.
Language
eng
URI
https://hdl.handle.net/10371/169252

http://dcollection.snu.ac.kr/common/orgView/000000162759
Files in This Item:
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share