Publications

Detailed Information

Cooperative transport using multiple wheeled mobile robots with nonholonomic constraints : 다중 논홀로노믹 모바일 로봇을 활용한 협조 이송

DC Field Value Language
dc.contributor.advisor이동준-
dc.contributor.author김성중-
dc.date.accessioned2021-11-30T02:01:25Z-
dc.date.available2021-11-30T02:01:25Z-
dc.date.issued2021-02-
dc.identifier.other000000165747-
dc.identifier.urihttps://hdl.handle.net/10371/175134-
dc.identifier.urihttps://dcollection.snu.ac.kr/common/orgView/000000165747ko_KR
dc.description학위논문 (석사) -- 서울대학교 대학원 : 공과대학 기계공학부, 2021. 2. 이동준.-
dc.description.abstractA novel cooperative transport system using nonholonomic WMRs is presented.
The system consists of rigid pallet frame(or PLT frame) and multiple WMRs
to be united with the frame. Each WMR estimates its pose by optimally fusing
multiple RPlidar, encoder and IMU. To achieve cooperative control, the system
generates WMRs motion satisfying whole system's non-slip condition by utilizing
instantaneous center of rotation. To achieve cooperative estimation, the system
utilizes the constraints information to estimate PLT frame and improve WMRs
pose, using Smoothly Constrained Kalman Filter method. Additionally, optimal
trajectory generation method is also suggested. Experiment result of the system
with 4 WMRs implies that this system is e ective enough to be used in industrial
eld.
-
dc.description.abstract본 논문에서는 논홀로노믹 모바일 로봇을 이용한 협조이송로봇시스템에 대해 다룬
다. 해당 시스템은 로봇을 합체시키기 위한 파렛트 프레임과 이와 합체할 복수의
로봇으로 구성된다. 각각의 로봇은 복수의 RP라이다, 엔코더, IMU를 최적화 기반
으로 센서퓨전하여 측위를 수행한다. 로봇들이 파렛트 프레임과 합쳐지면서 로봇
위치간 구속조건이 발생하는데 이 조건을 협조이송로봇의 제어와 추정에 모두 활
용하였다. 협조 제어를 위해 모바일로봇이 미끄럼 방지 조건을 만족하며 이동할 수
있도록 회전 중심 개념을 통한 제어 방식을 고안 하였다. 협조 추정을 위해 구속조
건을 이용하여 Smoothly Constrained Kalman Filter기법으로 로봇의 위치를 보다
정확히 추정하였다. 이에 더불어, 제시된 협조 이송로봇의 특징을 잘 반영한 최적 경
로 생성 방법을 제시하였다. 4대의 모바일로봇을 활용한 실험을 통해 해당 시스템의
실효성을 검증하였다.
-
dc.description.tableofcontents1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Robot design 7
2.1 Mobile Robot Design . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 System Description . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Actuation layer . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Computation layer . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Sensor Layer . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.5 Peg Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.6 PLT Frame and Lifting Module . . . . . . . . . . . . . . . 10
3 Single Robot Estimation - Loosely Coupled Optimal Fusion 13
3.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.1 Point to Line Iterative Corresponding Point . . . . . . . . 13
3.2 Loosely Coupled Multi-Lidar Fusion . . . . . . . . . . . . . . . . 14
3.2.1 Introduction and Sensor Placement . . . . . . . . . . . . . 14
3.2.2 Preintegration of States . . . . . . . . . . . . . . . . . . . 14
3.2.3 Covariance Propagation . . . . . . . . . . . . . . . . . . . 17
3.2.4 State Update by Optimal Fusion . . . . . . . . . . . . . . 19
4 Cooperative Control 20
4.1 Cooperative Control . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.1 Control by Instantaneous Center of Rotation . . . . . . . 20
4.1.2 Determination of Velocity Limit . . . . . . . . . . . . . . 25
4.2 Backstepping Trajectory Tracking Control . . . . . . . . . . . . . 27
5 Cooperative Estimation 30
5.1 Cooperative Estimation . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Pose Estimation via SCKF . . . . . . . . . . . . . . . . . . . . . 31
6 Optimal Trajectory Generation for Cooperative System 34
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 Path Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2.1 Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2.2 Path Planner . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3 Path Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3.1 Path rebuilding . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3.2 Optimal Tracking . . . . . . . . . . . . . . . . . . . . . . . 39
7 Experiment Result and Analysis 43
7.1 Experiment Result and Analysis . . . . . . . . . . . . . . . . . . 43
7.1.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . 43
7.1.2 Single Robot Estimation . . . . . . . . . . . . . . . . . . . 44
7.1.3 Cooperative Transport System Tracking Result . . . . . . 46
8 Conclusion 49
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
-
dc.format.extentvi, 55-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectCooperative Transport-
dc.subjectSensor Fusion-
dc.subjectMulti-robot Control-
dc.subjectMulti-robot Estimation-
dc.subjectOptimal Trajectory-
dc.subject.ddc621-
dc.titleCooperative transport using multiple wheeled mobile robots with nonholonomic constraints-
dc.title.alternative다중 논홀로노믹 모바일 로봇을 활용한 협조 이송-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorSeongjung Kim-
dc.contributor.department공과대학 기계공학부-
dc.description.degreeMaster-
dc.date.awarded2021-02-
dc.identifier.uciI804:11032-000000165747-
dc.identifier.holdings000000000044▲000000000050▲000000165747▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share