Publications

Detailed Information

A reduced graphene oxide filter for particulate matter removal : 미세먼지 제거를 위한 환원 그래핀 옥사이드 필터

DC Field Value Language
dc.contributor.advisor김용협-
dc.contributor.author정원지-
dc.date.accessioned2021-11-30T02:03:37Z-
dc.date.available2021-11-30T02:03:37Z-
dc.date.issued2021-02-
dc.identifier.other000000164341-
dc.identifier.urihttps://hdl.handle.net/10371/175152-
dc.identifier.urihttps://dcollection.snu.ac.kr/common/orgView/000000164341ko_KR
dc.description학위논문 (박사) -- 서울대학교 대학원 : 공과대학 기계항공공학부, 2021. 2. 김용협.-
dc.description.abstractAir pollution is one of the most serious problems facing mankind because of its impact on ecosystems and human beings. In particular, particulate matter less than 2.5 micrometers in diameter (PM2.5) is the biggest problem that threatens human health. Here, it is firstly presented a filter that removes the PM2.5 at a high efficiency with a low pressure-drop. A high surface area afforded by a two-dimensional nanomaterial of reduced graphene oxide (rGO) and a highly porous structure provided by an rGO foam render the filter efficient PM removing and enable low pressure drop operation. Repeated regeneration and reuse with little loss of efficiency demonstrates the robustness of the filter. Additionally, its quality factor which represents overall efficiency was almost twice the best ever reported in the literature. The copper- based reduced graphene oxide (C-rGO) filter with the rGO foam formed on both sides of a copper mesh plays role of removing the outdoor PM and at the same time purifying the indoor PM efficiently. Moreover, this thesis introduces a filter system that removes both filterable PM (FPM) and condensable PM (CPM) from pollution source with high efficiency. The system which is consisted of two nichrome-based reduced graphene oxide (N-rGO) filters and a condenser between them can remove the usual FPM and at the same time CPM-induced dust particle that typically leaves the pollution source unabated. The filters, quite effective in removing the PM with their three-dimensional structure, retain the removal capability even at high temperature and in acidic condition that prevail at the pollution source. With advantages such as simple fabrication, easy scaling-up, bidirectionality, and low pressure drop, the filter presented here would exemplify the desirable set of characteristics for the PM removal filters. And the proposed filter system could provide a solution for removal of both FPM and CPM from the pollution source.-
dc.description.abstract대기 오염은 생태계에 미치는 영향이 막대함에 따라 인류가 직면 한 가장 심각한 문제 중 하나이다. 특히 직경 2.5 마이크로 미터 미만의 입자상 물질은 인체 건강을 직접적으로 위협하는 오염원이다. 이 논문에서는 낮은 압력 강하의 고효율 미세먼지 제거 필터를 소개한다. 2차원 나노 물질인 환원 그래핀 옥사이드로 구성된 다공성 필터는 높은 표면적을 이용한 효율적인 미세먼지의 제거가 가능하였으며, 낮은 압력 강하에서도 작동하였다. 뿐만 아니라 효율성 손실이 거의 없는 반복 재생 및 필터의 재사용이 가능하였다. 이에 따라 필터의 전반적인 효율성을 나타내는 성능지수에서 기존의 최고 값보다 월등히 높은 값을 나타내었다. 또한 구리 메쉬 양면에 환원 그래핀 옥사이드 구조체가 형성된, 구리 기반의 환원 그래핀 옥사이드 필터는 실외 미세먼지를 제거하는 동시에 실내 미세먼지를 효율적으로 정화하는 역할을 하였다. 이와 더불어 본 논문에서는, 미세먼지 발생원에서 여과성 미세먼지와 응축성 미세먼지를 모두 제거하는 필터 시스템을 소개한다. 니크롬 기반의 환원 그래핀 옥사이드 필터2개와 그 사이에 위치한 콘덴서로 구성된 시스템은 여과성 미세먼지를 제거하는 동시에 일반적으로 발생원에서 정화되지 않고 대기중으로 배출되는 응축성 미세먼지 입자를 제거 할 수 있었다. 3차원 구조로 미세먼지 제거에 매우 효과적인 이 필터는 대부분의 발생원 환경과 유사한 고온 및 산성 조건에서도 효율을 유지하였다. 결론적으로 간단한 제조, 손쉬운 대면적화, 양방향성 및 낮은 압력 강하 등의 장점을 가진 환원 그래핀 옥사이드 필터는 미세먼지 제거에 최적화된 특성들을 갖추고 있었다. 또한 제시된 필터 시스템은 오염원에서 여과성 미세먼지와 응축성 미세먼지를 모두 제거하는 해결책을 제공하였다.-
dc.description.tableofcontentsChapter 1. Introduction.……………………………………………1

Chapter 2. Particulate matter (PM) removal using copper-based reduced graphene oxide (C-rGO) filter.…………………6
2.1 Preparation of C-rGO filter...……………………………………7
2.1.1 Graphene oxide solution..…………………………………7
2.1.2 Fabrication of C-rGO filter..………………………………9
2.1.2.1 Self-assembled rGO structure.………………………9
2.1.2.2 Spectroscopy of C-rGO filter.………………………11
2.1.3 Characteristics of C-rGO filter.…………………………14

2.2 PM removal performance of C-rGO filter……………………16
2.2.1 Method.……………………………………………………16
2.2.2 PM removal demonstration.………………………………19
2.2.2.1 PM removal using C-rGO filter.…………………19
2.2.2.2 PM removal using rGO coated mesh.……………23
2.2.3 Microscopy for verification………………………………25
2.2.3.1 Scanning electron microscope (SEM)……………25
2.2.3.2 Effective surface area of C-rGO filter……………26
2.2.4 Spectroscopy for verification……………………………28
2.2.4.1 Energy-dispersive X-ray spectroscopy (EDX)………28
2.2.4.2 X-ray photoelectron spectroscopy (XPS).…………30
2.2.5 Performance of C-rGO filter under harsh condition.……32
2.2.5.1 Pressure drop of C-rGO filter………………………32
2.2.5.2 PM removal under air flow and humid condition…34
2.2.6 Reusability and durability of C-rGO filter………………36
2.2.6.1 Analysis to confirm reusability…………………36
2.2.6.2 Cycle performance of C-rGO filter…………40
2.2.6.3 Long-term PM removal of C-rGO filter…………42
2.2.7 Quality factor of C-rGO filter……………………………44

2.3 Indoor air purification………………………………………46
2.3.1 Bidirectionality of C-rGO filter…………………………46
2.3.1.1 Indoor air pollution………………………………46
2.3.1.2 Indoor PM adsorption of C-rGO filter…………48
2.3.2 Indoor PM removal using C-rGO filter…………………50
2.3.3 Indoor and outdoor PM removal test……………………52

Chapter 3. Nichrome-based reduced graphene oxide (N-rGO) filter for removing PM from the source……………………58
3.1 PM emission source…………………………………………59
3.1.1 Filterable PM (FPM) and condensable PM (CPM)……59
3.1.2 High temperature and acidic gas………………………62

3.2 Preparation of experiment …………………………………64
3.2.1 Fabrication of N-rGO filter.……………………………64
3.2.2 FPM and CPM generation and removal system………68

3.3 FPM and CPM removal performance of N-rGO filter………72
3.3.1 FPM removal using N-rGO filter.……………………72
3.3.2 CPM removal using N-rGO filter.……………………75
3.3.2.1 CPM generation verification.……………………75
3.3.2.2 CPM removal performance of N-rGO filter…76
3.3.3 Spectroscopy for verification…………………………79
3.3.4 Reusability of N-rGO filter.……………………………88
3.3.5 Performance of N-rGO filer under air flow condition…90
3.3.6 PM removal rate of N-rGO filter…………………………92

3.4 Thermal stability of N-rGO filter…………………………….94
3.4.1 Characteristics of filter after exposure to high temperature...94
3.4.2 PM removal under high temperature condition..…………98
3.4.3 Control experiment result of commercial filter………101
3.4.4 PM removal under air flow condition.………………105

3.5 Acid resistance of N-rGO filter……………………………..107
3.5.1 Characteristics of filter after exposure to acidic oxide.....107
3.5.2 PM removal of filter after exposure to acidic oxide.…112

Chapter 4. Conclusions.………………………………………115

Bibliography………………………………………………………117

초 록.………………………………………………………138
-
dc.format.extentxiii, 139-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectair pollution-
dc.subjectparticulate matter removal filter-
dc.subjectreduced graphene oxide-
dc.subjectindoor PM purification-
dc.subjectcondensable PM-
dc.subjectthermal stability and acid resistance-
dc.subjectpollution source-
dc.subject대기 오염-
dc.subject미세먼지 제거 필터-
dc.subject환원 그래핀 옥사이드-
dc.subject실내 미세먼지 정화-
dc.subject응축성 미세먼지-
dc.subject내열성과 내산성-
dc.subject오염원-
dc.subject.ddc621-
dc.titleA reduced graphene oxide filter for particulate matter removal-
dc.title.alternative미세먼지 제거를 위한 환원 그래핀 옥사이드 필터-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorWonji Jung-
dc.contributor.department공과대학 기계항공공학부-
dc.description.degreeDoctor-
dc.date.awarded2021-02-
dc.identifier.uciI804:11032-000000164341-
dc.identifier.holdings000000000044▲000000000050▲000000164341▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share