Publications

Detailed Information

Optimal Design of Wind Turbine Blade considering Multiple Variables using the Response Surface Method : 다양한 설계 요소를 고려한 풍력터빈 블레이드 최적 설계

DC Field Value Language
dc.contributor.advisor신상준-
dc.contributor.author이상래-
dc.date.accessioned2021-11-30T02:43:57Z-
dc.date.available2021-11-30T02:43:57Z-
dc.date.issued2021-02-
dc.identifier.other000000163645-
dc.identifier.urihttps://hdl.handle.net/10371/175465-
dc.identifier.urihttps://dcollection.snu.ac.kr/common/orgView/000000163645ko_KR
dc.description학위논문 (박사) -- 서울대학교 대학원 : 공과대학 항공우주공학과, 2021. 2. 신상준.-
dc.description.abstractAs the size of the wind turbines becomes larger, the optimal design of the blades becomes more significant. Design of a wind turbine blade is performed through the procedures of aerodynamic design, structural design, load analysis, structural integrity evaluation. And then the design will be finalized when the final aerodynamic and structural performances satisfy the target specification set at the conceptual design stage. From the perspective of a blade aerodynamic design, target output, efficiency, axial load and noise are the key factors of the design. With regard to the structural design of the blade, weight, tip deflection, safety margin from extreme, fatigue failure, and buckling load coefficient are the major design parameters to be considered. However, each design factor has an interactive relationship, not independent. Therefore, it is important to reduce the number of repetitive designs to minimize the blade development period, and for this, aerodynamic and structural designs of the blade should be carried out appropriately.
This thesis describes an improved optimization scheme for the blade aerodynamic design under realistic conditions, while considering multiple design parameters. The relationship between the objective function and the design parameters, such as the chord length, maximum chord and twist angle, are obtained by using the second-order response surface methodology (RSM). The identified parameters are organized to optimize the aerodynamic design of the blades. Meanwhile, from the standpoint of the structural design, the present research presents a methodology to perform blade structural design of large-size wind turbine blade by using structural specific results of a baseline blade with proven structure based on the classical lamination theory (CLT) and the one-dimensional beam formulation. In addition, with an optimal structural design scheme using Variational Asymptotic Beam Section Analysis (VABS), the optimal design for blade structure is carried out. By the proposed design scheme, it will be possible to do a state-of- the-art design. It is reachable in a short period of time with small computer resources and effort. As a result, this design method is expected to provide optimal design for the wind turbine blade.
-
dc.description.abstract본 논문에서는 풍력 터빈이 20년의 경제 수명 동안 작용할 수 있는 다양한 하중을 고려하여, 풍력 블레이드의 최적 설계에 관한 연구를 수행하였다. 블레이드 최적 설계를 위해 블레이드의 형상을 결정하는 공력설계, 안전도를 보장하는 구조설계와 같은 설계 단계와 함께 이를 이용한 하중 해석, 하중 해석 결과를 이용한 구조 건정성 평가를 각각 수행하였다.
최적 블레이드 공력설계를 위해 반응표면분석법(RSM)을 적용하여 최적의 시위 길이와 비틀림 각도의 조합을 블레이드 길이 방향으로 각각 계산하였으며, 이렇게 계산된 블레이드 형상을 이용하여 연간 에너지 생산(AEP) 계산 등을 수행하였다. 구조 설계의 경우, 현재 운영중인 상업용 블레이드를 참고하여 블레이드 구조 설계의 가장 핵심인 Spar cap을 대상으로 최대의 강성과 최소의 중량을 가지는 최적 설계를 진행하였으며, 이렇게 설계된 블레이드 섹션을 대상으로 VABS를 이용하여 다양한 설계변수(적층 개수,전단 웹 위치등)를 고려한 최적 설계를 추가로 수행하였다. 설계가 완료된 블레이드를 대상으로, 블레이드를 길이방향으로 여러 개의 섹션으로 구분, 하중 해석에 필요한 정보(단위 무게, 굽힘 강성, 비틀림 강성)를 각각 추출하였으며, 이 값들을 이용해서 블레이드 요소 모멘텀 이론(BEMT)과 CFD를 활용하여 하중 해석을 수행하였고, 결과는 블레이드 구조 건전성 평가를 위해 사용되었다. 블레이드 구조건전성 평가의 경우, 타워와의 간섭을 피하기 위한 최대변위 평가, 좌굴, 섬유 및 수지 파손, 피로 평가 등의 항목으로 블레이드 구조에 대한 평가를 수행하였으며, 이를 통해 블레이드의 최적 설계와 안전도 평가를 수행하였다.
-
dc.description.tableofcontents1 Introduction 1
1.1. Wind Turbine and its Blades 1
1.2. Literature Review 2
1.3. Summary of Chapters 7
2 Objective and Scope 11
2.1. Wind Turbine Blade Design 11
2.2. Optimal Aerodynamic Design of Blade 12
2.3. Optimal Structural Design of Blade 14
3 Theoretical Method 18
3.1. Aerodynamic Design 19
3.1.1. Blade Element Momentum Theory (BEMT) 19
3.1.2. Aerodynamic Design 21
3.1.3. Response Surface Method (RSM) 22
3.2. Structural Design 24
3.2.1. Spar Cap Thickness Estimation 24
3.2.2. Stiffness Coefficient of the Spar Cap 25
3.2.3. Optimization for Blade Sections 27
3.3. Extraction of the Sectional Properties 28
3.4. Structural Integrity Evaluation 29
3.4.1. Ultimate Limit State (ULS) 30
3.4.2. Fatigue Limit State (FLS) 32
4 Optimal Aerodynamic Design 40
4.1. Optimal Aerodynamic Design Procedures 40
4.1.1. Initial Blade Design 41
4.1.2. Objective Function 42
4.1.3. Design Parameter and Calculation Locations 43
4.1.4. Calculation Procedure 44
4.2. Optimal Aerodynamic Design 44
4.2.1. Surface and Contour Plot 45
4.2.2. Optimal Aerodynamic Design Result 46
5 Optimal Structural Design 58
5.1. Structural Configuration 59
5.2. Structural Design for Spar Cap 60
5.2.1. Blade Geometry 60
5.2.2. Spar Cap Thickness Estimation 61
5.2.3. Stiffness Coefficient of the Spar Cap 63
5.3. Optimal Structural Design for the Section 65
5.3.1. Present Algorithm 65
5.3.2. Optimal Cross Section Design 66
5.3.3. Results Comparison based on Designing Algorithm 67
6 Structural Evaluation 74
6.1. Extraction of the Sectional Properties 75
6.2. Load Prediction 76
6.2.1. Ultimate Limit State (ULS) 76
6.2.2. Fatigue Limit State (FLS) 78
6.3. CFD Computation 79
6.3.1. Computational Grid and Calculation Conditions 80
6.3.2. Stream Line and Pressure Distributions 81
6.3.3. Thrust and Torque Distributions 82
6.4. Structural Integrity Evaluation 82
6.4.1. Maximum Tip Deflection 83
6.4.2. Laminate Failure Evaluation 83
6.4.3. Fatigue Evaluation Results 84
6.4.4. Stability Evaluation 85
7 Numerical Results 110
7.1. Extraction of the Sectional Properties 110
7.2. Optimal Aerodynamic Design 111
7.3. Optimal Structural Design 112
7.3.1. Present Algorithm 112
7.3.2. Discussion for the Blade Component 113
7.3.3. Comparison of the Blade Weight 114
8 CONCLUSIONS 125
Bibliography 129
-
dc.format.extentix, 138-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectWind Turbine-
dc.subjectRotor Blade-
dc.subjectOptimization-
dc.subjectAeroelastic Analysis-
dc.subjectBlade Element Momentum Theory (BEMT)-
dc.subjectResponse Surface Methodology (RSM)-
dc.subjectDesign Parameters-
dc.subjectSpar Cap-
dc.subjectClassical Lamination Theory-
dc.subjectVariational Asymptotic Beam Section Analysis (VABS)-
dc.subjectFinite Element Analysis(FEA)-
dc.subjectCFD-
dc.subjectBending- Torsion Coupling-
dc.subjectPreliminary Structural Design-
dc.subjectAnnual Energy Production (AEP)-
dc.subject풍력발전시스템-
dc.subject블레이드-
dc.subject최적설계-
dc.subject블레이드 요소 모멘텀 이론(BEMT)-
dc.subject반응표면분석법(RSM)-
dc.subject공탄성 해석-
dc.subject등가보 모델-
dc.subjectVABS-
dc.subject연간에너지생산(AEP)-
dc.subject.ddc621-
dc.titleOptimal Design of Wind Turbine Blade considering Multiple Variables using the Response Surface Method-
dc.title.alternative다양한 설계 요소를 고려한 풍력터빈 블레이드 최적 설계-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorLEE, SangLae-
dc.contributor.department공과대학 항공우주공학과-
dc.description.degreeDoctor-
dc.date.awarded2021-02-
dc.identifier.uciI804:11032-000000163645-
dc.identifier.holdings000000000044▲000000000050▲000000163645▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share