Publications

Detailed Information

I. Design, synthesis, and evaluation of catalytic activity of cinchona alkaloid-derived bifunctional organocatalyst II. Enantioselective total synthesis of Nitraria alkaloids, (+)-nitramine, (-)-isonitramine and (-)-sibirine via asymmetric phase-transfer catalytic α-allylations of α-carboxylactams : I. 신코나 알칼로이드 유래 다기능 유기촉매의 설계와 합성 II. α-Carboxylactam의 입체선택적 상전이 촉매 α-allylation반응을 통한 Nitraria 알칼로이드, (+)-nitramine, (-)-isonitramine 및 (-)-sibirine의 전합성

DC Field Value Language
dc.contributor.advisor박형근-
dc.contributor.author양제원-
dc.date.accessioned2021-11-30T04:31:17Z-
dc.date.available2021-11-30T04:31:17Z-
dc.date.issued2021-02-
dc.identifier.other000000164742-
dc.identifier.urihttps://hdl.handle.net/10371/175766-
dc.identifier.urihttps://dcollection.snu.ac.kr/common/orgView/000000164742ko_KR
dc.description학위논문 (박사) -- 서울대학교 대학원 : 약학대학 약학과, 2021. 2. 박형근.-
dc.description.abstract비대칭 수소결합 donor의 도입은 입체선택적 유기촉매반응에 있어 주요 활성화 전략이다. 수소결합을 유도하는 유기촉매는 주로 비대칭 (thio)ureas, diols, phosphoric acids, and 또는 다양한 신코나 알칼로이드 유도체를 포함하고 있다. 일반적으로 수소결합 donor가 electrophile을 활성화 시키고, 비대칭구조의 브뢴스테드/루이스 염기가 keto-enol tautomerism을 통해 nucleophile을 활성화 시킨다. Protonated된 브뢴스테드 염기는 2차 proton 이동을 하여 반응된 product를 놓아주면서 유기촉매를 재 생성한다. 이러한 원리에 의하여 새로운 형태의 bifunctional한 수소결합 유기촉매로써 비대칭 반응에 널리 쓰이는 신코나 알칼로이드 유도체 촉매합성을 계획하고, 합성하여 실제 반응에 적용하였다. 기존의 소개되었던 신코나 알칼로이드로부터 설계된 유기촉매는 주로 9번위치의 탄소 옆에 있는 하이드록실기를 변화시켜 강력한 수소결합을 유도하는 thiourea또는 squaramide와 같은 그룹을 도입시켜 높은 광학적 수율을 이끌어낸 결과를 보였다. 이에 착안하여 퀴누클리딘에 인접한 3번탄소옆 비닐그룹을 변화시켜 수소결합을 유도하는 작용기를 도입하는 새로운 형태의 촉매합성을 계획하였다. 퀴누클리딘에 인접한 3번탄소 비닐 그룹을 카르복실 산으로 산화 시킨 후 커티우스 재배열을 통하여 2차 아민으로 변환 하였다. 이후 아민에 대한 nucleophilic addition을 통하여 원하는 thiourea 및 squaramide 촉매를 합성하여 Michael addition 반응에 적용하였다.
기존에 보고되지 않은 신코나 알칼로이드 유도체 촉매를 사용하여 입체선택적인 Michael addition 반응을 진행하였다. 3번위치에 수소결합을 유도하는 작용기를 도입한 촉매는 기존의 9번위치에 작용기를 도입한 촉매에 비해 입체선택성이 좋지 않았다 (최대 89%, 32% ee). 9번위치의 알코올의 입체배열을 자연상태에서 반대로 바꿔야만 약간의 입체선택성을 보임을 알 수 있었다. 새로 합성한 촉매의 효능을 끌어 올리기 위해선 9번위치의 알코올에 좀더 부피가 큰 보호기나 작용기를 도입하는 등 더욱 효과적인 입체선택적 작용을 이끌어내기 위해 개선이 필요하다. 나아가 촉매에 알맞은 기질 및 반응 선정을 하여 높은 입체선택적 반응의 개발이 계획 중에 있다

2-azaspirocycle 형태의 천연 화합물은 질소를 함유하고 있으며 2개의 환이 하나의 원자를 통해 연결된 형태의 화합물이다. 이와 같은 구조의 천연물들은 뛰어난 생리활성 때문에 전합성 타겟으로 각광받고 있다. 이 천연물 중 Nitraria 알칼로이드로 분류되는 (+)-nitramine, ()-isonitramine, ()-sibirine 은 키랄 4차 탄소를 지니고 있으며, 2-azaspiro[5,5]undecane-7-ol로 분류되는 구조는 신경독성 알칼로이드로 잘 알려진 histrionicotoxin (1-aza-spiro[5,5]undecan-8-ol)과 구조적 상관관계가 있다고 보고된 바 있다. 또한 특이한 탄소 골격과 생리활성을 나타내는 데 중요한 구조라고 알려져 있는 γ-amino alcohol기를 함유하고 있기 때문에 많은 연구자들이 Nitraria 알칼로이드의 합성법에 대한 연구를 보고하고 있다.
Azaspirocyclic 구조로 손쉽게 고리화 될 수 있는 α-alkyl-carboxyllactam의 새로운 입체선택적 합성법을 이용하여 Nitraria 알칼로이드의 전합성을 완료하였다. 비대칭 상전이촉매를 이용한 α-알킬화 반응을 -tert-butoxycarbonyllactam에 적용하여 원하는 -alkyl--tert-butoxycarbonyllactam을 99% 수율과 98% 광학수율로 얻어, 이를 천연물 전합성 중간체로 응용하였다. ()-isonitramine은 총 12단계의 반응을 통해 얻을 수 있었으며 (41% 수율), 주요 핵심 반응으로 δ-valerolactam을 출발물질로 한 입체선택적 상전이촉매 2-bromoallylation, 디크만 축합반응, 그리고 입체선택적 환원반응이 있다. ()-Sibirine은 ()-isonitramine을 N-ethoxycarbonylation 시킨 후 환원반응을 통해 얻을 수 있었으며 (총 14단계 32% 수율), 중간체인 (R)-2-benzhydryl-2-azaspiro[5.5]undecane-1,7-dione을 입체선택적으로 환원한 후 diphenylmethyl기의 환원적 제거를 통해 (+)-nitramine을 합성하였다 (총 11단계, 40% 수율). 이렇게 합성된 Nitraria 알칼로이드는 대량합성을 통해 다양한 생물활성의 규명을 위해 이용될 수 있을 것이라 기대하고 있다.
-
dc.description.abstractA major activation strategy within asymmetric organocatalysis is the employment of chiral hydrogen bond donors. Chiral-(thio)ureas and various cinchona alkaloid derivatives are the most widely employed hydrogen-bonding organocatalysts. Noncovalent hydrogen-bonding bifunctional organocatalysts have been extensively employed to Michael addition reactions.
Conventional cinchona-alkaloid catalysts mostly involve the modification of C-9 alcohol. Since the configuration of C-9 stereocenter is inversed, the catalyst could serve as a more tunable, rigid and active catalyst than natural alkaloids themselves. Few reactions are reported using catalysts modifying methoxy group of quinoline ring to thiourea, so the vinyl group along the quinuclidine ring was subject to modification. Vinyl group at C-3 position of cinchona alkaloid was oxidized to carboxylic acid, and amine was introduced via Curtius rearrangement. The desired hydrogen-bonding functional group was successfully applied on C-3 position, and new organocatalysts were tested for catalytic activity.
Two representative Michael addition reactions were chosen for evaluation of catalytic activity. In Michael addition of malonates to nitroolefins, C-9 TBS-protected epiquinine-derived squaramide catalyst showed the highest catalytic activity (89% 32% ee). In Michael addition of nitromethane to chalcones, C-9 benzyl protected thiourea catalyst showed the highest catalytic activity (89%, 28% ee). Despite the variation of hydrogen-bonding donors in new position, the new organocatalysts showed lower chemical yield and enantioselectivity than those of previously reported catalysts. Studies toward further modification of the structure of the catalyst and appropriate substrate determination are underway.
Many optically active 2-azaspirocyclic structures have frequently been found in biologically active natural products. In particular, Nitraria alkaloids, (+)-nitramine, ()-isonitramine and ()-sibirine, have chiral quaternary carbon centers on their 2-azaspiro[5,5]undecane-7-ol skeletons. -Alkylation of -tert-butoxycarboxylactams under phase-transfer catalytic (PTC) conditions (s-KOH, toluene, 40 °C) in the presence of (R,R)-NAS bromide (5 mol%) afforded the corresponding -alkyl--tert-butoxycarbonyllactams in very high chemical (<99%) and optical yields (<98% ee). The catalytic methodology was successfully applied for the enantioselective total synthesis of Nitraria alkaloids. ()-Isonitramine was obtained in 12 steps (98% ee, 41% overall yield) from δ-valerolactam via enantioselective phase-transfer catalytic allylation, Dieckmann condensation and diastereoselective reduction as the key steps. ()-Sibirine and (+)-nitramine were prepared from ()-isonitramine and its synthetic intermediate. ()-Sibirine was synthesized by N-ethoxycarbonylation of ()-isonitramine followed by reduction (98% ee, 14 steps, 32% overall yield). Furthermore, the diastereoselective reduction of (R)-2-benzhydryl-2-azaspiro[5.5]undecane-1,7-dione followed by reductive removal of the diphenylmethyl group successfully gave (+)-nitramine (98% ee, 11 steps, 40% overall yield).
-
dc.description.tableofcontentsABSTRACT
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES
LIST OF SCHEMES

INTRODUCTION
1. Cinchona-derived chiral organocatalyst
1.1. Bifunctional organocatalyst
1.1.1. Definition of bifunctional hydrogen-bonding organocatalyst
1.1.2. Development of (thio)urea organocatalyst
1.1.3. Modified cinchona alkaloid derivatives
1.2. Application of cinchona-derived bifunctional hydrogen-bonding organocatalysts to various catalytic asymmetric reactions
1.2.1. Reactions using cinchona-derived (thio)urea organocatalysts
1.2.2. Reactions using cinchona-derived squaramide organocatalysts
1.2.3. Reactions using cinchona-derived organocatalysts containing other moieties

2. Phase-transfer catalysis for asymmetric alkylation
2.1. Phase-transfer catalysis
2.2. General mechanism of phase-transfer catalysis
2.2.1. Interfacial mechanism by Makosza
2.2.2. Extraction mechanism by Stark
2.3. Progress of phase-transfer catalytic alkylation
2.3.1. Progress of phase-transfer catalysts
2.3.2. Progress of the substrates for phase-transfer catalytic alkylation
2.3.2.1. Monocarbonyl substrates for phase-transfer catalytic alkylation
2.3.2.2. Dicarbonyl substrates for phase-transfer catalytic alkylation

3. Total synthesis of Nitraria alkaloids
3.1. Synthetic use of α-alkyl-tert-butoxycarbonyl-lactams
3.2. Nitraria alkaloids
3.3. Representative asymmetric synthesis of Nitraria alkaloids
3.3.1. Synthesis of Nitraria alkaloids by employing chiral auxiliaries
3.3.2. Synthesis of Nitraria alkaloids by employing chiral substrates
3.3.2.1. Synthesis of Nitraria alkaloids from (S)-N-1′-phenylethyl
valerolactam
3.3.2.2. Synthesis of Nitraria alkaloids from (R)-(−)-phenylglycinol
3.3.3. Synthesis of Nitraria alkaloids by enzymatic resolution
3.3.4. Synthesis of Nitraria alkaloids by enantioselective reduction
3.3.5. Synthesis of Nitraria alkaloids by palladium-catalyzed asymmetric allylic alkylation
3.3.5.1. Synthesis of Nitraria alkaloids from β-ketoesters
3.3.5.2. Synthesis of Nitraria alkaloids from α-quaternary Mannich adducts
3.3.6. Synthesis of Nitraria alkaloids by diastereoselective allylation
3.3.7. Synthesis of Nitraria alkaloids by radical cyclization

RESULTS AND DISCUSSION
1. Design, synthesis and application of cinchona alkaloid-derived organocatalysts
1.1. Design and synthesis of the catalysts
1.1.1. Rationale for the structure
1.1.2. 1st trial of modification of C-3 vinyl group
1.1.3. 2nd trial of modification of C-3 vinyl group
1.1.4. 3rd trial of modification of C-3 vinyl group
1.1.5. Catalyst library
1.2. Application of the catalyst to asymmetric Michael addition
1.2.1. Michael addition of malonates to nitroolefins
1.2.2. Michael addition of nitromethane to chalcones
1.3. Further plans for the promotion of catalytic activity

2. Total synthesis of Nitraria alkaloids
2.1. Retrosynthetic analysis
2.2. Enantioselective PTC α-allylation
2.3. Synthesis of ()-isonitramine
2.3.1. Series of radical reaction
2.3.2. Dieckmann condensation
2.3.3. Completion of the synthesis of ()-isonitramine
2.4. Synthesis of ()-sibirine
2.4.1. Failures in direct methylation
2.4.2. Reductions of carbamates to yield ()-sibirine
2.5. Synthesis of (+)-nitramine
2.5.1. Strategies to yield inversed alcohol
2.5.2. Trials of inversion of C-7 alcohol
2.5.3. Diastereoselective reductions of ketone
2.5.4. Plausible transitional state model

CONCLUSION

EXPERIMENTAL SECTION
1. General methods
1.1. Solvents and reagents
1.2. Chromatography and HPLC
1.3. Spectra

2. Design, synthesis and application of cinchona alkaloid-derived organocatalysts
2.1. Synthesis of C-3 modified amine derivatives
2.2. Synthesis of thiourea organocatalysts
2.3. Synthesis of squaramide organocatalysts
2.4. Michael addition of malonates to nitroolefins
2.5. Michael addition of nitromethane to chalcones

3. Total synthesis of Nitraria Alkaloids
3.1. Enantioselective PTC α-allylation
3.2. Synthesis of (-)-isonitramine
3.3. Synthesis of (-)-sibirine
3.4. Synthesis of (+)-nitramine

REFERENCES

국문초록

APPENDIX
-
dc.format.extentxv, 178-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectasymmetry-
dc.subjectenantioselectivity-
dc.subjectbifunctionality-
dc.subjectCinchona alkaloid-
dc.subjectorganocatalyst-
dc.subjectphase-transfer catalytic alkylation-
dc.subjecttert-butoxycarbonyl-lactam-
dc.subjectNitraria alkaloid-
dc.subjectnitramine-
dc.subjectisonitramine-
dc.subjectsibirine-
dc.subject비대칭-
dc.subject입체선택적-
dc.subject다기능-
dc.subject신코나 알칼로이드-
dc.subject유기촉매-
dc.subject상전이 촉매 알킬화반응-
dc.subjectNitraria 알칼로이드-
dc.subject.ddc615-
dc.titleI. Design, synthesis, and evaluation of catalytic activity of cinchona alkaloid-derived bifunctional organocatalyst II. Enantioselective total synthesis of Nitraria alkaloids, (+)-nitramine, (-)-isonitramine and (-)-sibirine via asymmetric phase-transfer catalytic α-allylations of α-carboxylactams-
dc.title.alternativeI. 신코나 알칼로이드 유래 다기능 유기촉매의 설계와 합성 II. α-Carboxylactam의 입체선택적 상전이 촉매 α-allylation반응을 통한 Nitraria 알칼로이드, (+)-nitramine, (-)-isonitramine 및 (-)-sibirine의 전합성-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorJewon Yang-
dc.contributor.department약학대학 약학과-
dc.description.degreeDoctor-
dc.date.awarded2021-02-
dc.embargo.liftdate2024-03-01-
dc.contributor.major약품제조화학-
dc.identifier.uciI804:11032-000000164742-
dc.identifier.holdings000000000044▲000000000050▲000000164742▲-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share