Publications

Detailed Information

Tailoring Ion-Conducting Interphases on Magnesium Metals for High-Efficiency Rechargeable Magnesium Metal Batteries

DC Field Value Language
dc.contributor.authorPark, Hyeokjun-
dc.contributor.authorLim, Hyung-Kyu-
dc.contributor.authorOh, Si Hyoung-
dc.contributor.authorPark, Jooha-
dc.contributor.authorLim, Hee-Dae-
dc.contributor.authorKang, Kisuk-
dc.date.accessioned2022-04-20T07:17:13Z-
dc.date.available2022-04-20T07:17:13Z-
dc.date.created2021-02-02-
dc.date.created2021-02-02-
dc.date.created2021-02-02-
dc.date.issued2020-12-11-
dc.identifier.citationAcs Energy Letters, Vol.5 No.12, pp.3733-3740-
dc.identifier.issn2380-8195-
dc.identifier.other122040-
dc.identifier.urihttps://hdl.handle.net/10371/178484-
dc.description.abstractMagnesium (Mg) rechargeable batteries are one of the promising high-energy post-lithium battery chemistries exploiting the multivalent charge carrier. However, the use of magnesium metal has been challenging due to the formation of the ion-blocking passivation layer on magnesium metal in most organic electrolytes. Herein, we propose a new strategy to transform the passivating film into a Mg2+-conductive interphase via simple chemisorption of sulfur dioxide molecules on magnesium metal. The facile chemical tuning converts the magnesium oxide-based passivation layer into a magnesium sulfate-like phase, which greatly enhances the charge-transfer capability of multivalent Mg2+ ions. The reduced surface resistance of the magnesium metal results in efficient magnesium stripping/deposition reactions even under conventional ether-based electrolytes. Theoretical calculations support that the facile ionic conduction is attributed to the relatively low Mg2+ dissociation and migration energies in the tailored interphases. Furthermore, we elucidate the degradation mechanism of magnesium electrodes by combining various experimental analyses with computational calculations.-
dc.language영어-
dc.publisherAMER CHEMICAL SOC-
dc.titleTailoring Ion-Conducting Interphases on Magnesium Metals for High-Efficiency Rechargeable Magnesium Metal Batteries-
dc.typeArticle-
dc.contributor.AlternativeAuthor강기석-
dc.identifier.doi10.1021/acsenergylett.0c02102-
dc.citation.journaltitleAcs Energy Letters-
dc.identifier.wosid000599605500010-
dc.identifier.scopusid2-s2.0-85096721520-
dc.citation.endpage3740-
dc.citation.number12-
dc.citation.startpage3733-
dc.citation.volume5-
dc.identifier.sci000599605500010-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorKang, Kisuk-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusWIDE ELECTROCHEMICAL WINDOWS-
dc.subject.keywordPlusELECTROLYTE-SOLUTIONS-
dc.subject.keywordPlusSO2-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusADDITIVES-
dc.subject.keywordPlusCATHODES-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordPlusCO2-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share