Publications

Detailed Information

Electrospun Li-confinable hollow carbon fibers for highly stable Li-metal batteries

DC Field Value Language
dc.contributor.authorKim, Byung Gon-
dc.contributor.authorKang, Dong Woo-
dc.contributor.authorPark, Gumjae-
dc.contributor.authorPark, Sung Hyeon-
dc.contributor.authorLee, Sang -Min-
dc.contributor.authorChoi, Jang Wook-
dc.date.accessioned2022-04-21T00:33:06Z-
dc.date.available2022-04-21T00:33:06Z-
dc.date.created2021-07-27-
dc.date.created2021-07-27-
dc.date.created2021-07-27-
dc.date.created2021-07-27-
dc.date.issued2021-10-15-
dc.identifier.citationChemical Engineering Journal, Vol.422, p. 130017-
dc.identifier.issn1385-8947-
dc.identifier.other138488-
dc.identifier.urihttps://hdl.handle.net/10371/179163-
dc.description.abstractLi-metal has steadily gained attention as one of the promising next-generation anode materials because of its exceptional specific capacity and low operating potential that can significantly increase the energy density of batteries beyond those of the state-of-the-art Li-ion batteries. Nevertheless, the use of Li-metal is still faced with the challenge of uncontrollable dendrite growth that ceaselessly causes parasitic reactions, further impeding the practical use of Li-metal batteries. To circumvent this limitation by using a structural approach, herein, we report a 1D hollow carbon fiber incorporating lithiophilic Au nanoparticles (Au@HCF) as a promising Li host that is fabricated by scalable dual-nozzle electrospinning. Due to its well-defined 1D electronic conducting pathways for reducing the effective current density as well as the hollow core for confining Li-metal, Au@HCF can mitigate Li dendrite growth on the top surface and stabilize the solid-electrolyte interphase layer, thereby achieving a high Coulombic efficiency of 99-99.9% under 1 mA cm-2 and 2 mAh cm-2. Moreover, the LiFePO4 full cell combined with the Au@HCF anode containing predeposited 2 mAh cm-2 Li showed considerably improved cycle life of over 380 cycles, indicating that the design concept for the Li-confinable structure can be an excellent option for realizing emerging Li-metal batteries.-
dc.language영어-
dc.publisherElsevier BV-
dc.titleElectrospun Li-confinable hollow carbon fibers for highly stable Li-metal batteries-
dc.typeArticle-
dc.contributor.AlternativeAuthor최장욱-
dc.identifier.doi10.1016/j.cej.2021.130017-
dc.citation.journaltitleChemical Engineering Journal-
dc.identifier.wosid000672587400005-
dc.identifier.scopusid2-s2.0-85105254044-
dc.citation.startpage130017-
dc.citation.volume422-
dc.identifier.sci000672587400005-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorChoi, Jang Wook-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusLITHIUM-METAL-
dc.subject.keywordPlusANODE-
dc.subject.keywordPlusELECTROLYTE-
dc.subject.keywordPlusDEPOSITION-
dc.subject.keywordPlusNUCLEATION-
dc.subject.keywordPlusSEPARATORS-
dc.subject.keywordPlusORIGIN-
dc.subject.keywordPlusMATRIX-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordAuthorElectrospinning-
dc.subject.keywordAuthorCore-shell fiber-
dc.subject.keywordAuthorLithiophilic material-
dc.subject.keywordAuthorLi host-
dc.subject.keywordAuthorLi-metal battery-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Physics, Materials Science

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share