Publications

Detailed Information

Dispersion of unfractionated CO2-derived protein-rich microalgae (Chlorella sp. HS2) for ecofriendly polymer composite fabrication

Cited 0 time in Web of Science Cited 3 time in Scopus
Authors

Yang, Jin Hoon; Hong, Joung Sook; Lee, Jeong Seop; Sim, Sang Jun; Ahn, Kyung Hyun

Issue Date
2022-06
Publisher
Elsevier BV
Citation
Materials Today Communications, Vol.31, p. 103769
Abstract
© 2022 Elsevier LtdThis study investigates unfractionated protein-rich microalgae (Chlorella sp. HS2) (HS2) as a new CO2-derived biomass filler resource with which to develop an ecofriendly microalgae-based polymer composite. Unfractionated HS2 is mixed with poly(ethylene-vinyl acetate) (EVA) over wide range of concentrations ranging from 10 to 70 wt%. The dispersion of HS2 is analyzed based on morphological, rheological and mechanical measurements. Protein-rich HS2 has hydrophilic-hydrophobic surface due to the existence of chemical functional groups (C[dbnd]O, N-H) caused by high protein content (51% protein), predicting compatibility with EVA with polar functional (C[dbnd]O). Due to this compatibility, with 10–30 wt% of HS2, the composite shows a homogeneous micrometer-scale dispersion of HS2 in the EVA matrix (avg. diameter (Davg) ~ 7 µm). The composite maintains the dispersion of the HS2 without significant coalescence or network formation up to 50 wt% of HS2 (Davg ~ 10 µm). Correspondingly, the storage modulus (G′ at 0.1 rad/s) of the composite increases linearly until the HS2 content reaches 40 wt%, after which it increases exponentially with an increase in the HS2 content. An EVA composite with 10–20 wt% HS2 shows increased ductility (from 1700% to 2000% elongation at break with 10 wt% HS2) without a decrease in the tensile strength due to the homogeneous dispersion. Even with higher concentration of HS2, the composite maintains its ductile behavior and retains its synergistic effect with EVA (~ 500% elongation at break with 70 wt% HS2). The compatibility of HS2 with EVA and their hydrophilic surface delay agglomeration or percolation formation of HS2 cells in a polymer. This study suggests that protein-rich HS2 is a promising biomass filler that disperses in a polymer to the micrometer scale without additional chemical treatment.
ISSN
2352-4928
URI
https://hdl.handle.net/10371/184268
DOI
https://doi.org/10.1016/j.mtcomm.2022.103769
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share