Publications

Detailed Information

Disulfide-Mediated Elongation of Amyloid Fibrils of α-Synuclein For Use in Producing Self-Healing Hydrogel and Dye-Absorbing Aerogel

Cited 5 time in Web of Science Cited 5 time in Scopus
Authors

Ha, Yosub; Kwon, Yeji; Nam, Eun-Jeong; Park, Hyeji; Paik, Seung R.

Issue Date
2022-06
Publisher
Elsevier BV
Citation
Acta Biomaterialia, Vol.145, pp.52-61
Abstract
Copyright © 2022. Published by Elsevier Ltd.Due to their mechanical robustness, biocompatibility, and nanoscale size, amyloid fibrils (AFs) have been considered as a potential nanomaterial for biological applications. Unfortunately, however, AFs are usually not fully extended because of their pre-mature breakage, which hampers their use to generate biocompatible suprastructures, although the amounts of AFs could be amplified via their self-propagation property. Here, we have demonstrated the full extension of AFs of α-synuclein (αS) by introducing a cysteine residue to its C-terminus which prevents the shear-induced fragmentation of AFs via site-directed disulfide bond formation on the exposed surface of AFs. These heat- and cold-resistant elongated AFs were entangled into self-healable hydrogels through a mild disulfide-exchange process in the presence of tris(2-carboxyethyl) phosphine, which subsequently developed into dye-absorbing aerogels upon freeze-drying without collapsing the three-dimensional internal fibrillar network. The resulting αS aerogel with high porosity and increased surface area was shown to be capable of absorbing both hydrophilic and hydrophobic substances. In addition, the aerogel was further engineered with 8-arm polyethylene glycol containing a sulfhydryl group to increase its drug loading capacity and protease susceptibility for drug unloading. The elongated AFs, therefore, have been suggested to play a pivotal component for the development of bio-nano-matrix for diverse biological applications including drug delivery, tissue engineering, and environmental remediation. STATEMENT OF SIGNIFICANCE: Due to accurate protein self-assembly process, α-synuclein forms an amyloid fibril which are the major component of Lewy bodies. In general, α-synuclein amyloid fibrils break under thermal fluctuations as these nanofibrils elongate to reach certain length. In this study, we have demonstrated the full extension of α-synuclein amyloid fibrils by introducing a cysteine residue to its C-terminus by forming site-directed disulfide bonds on the exposed surface of amyloid fibrils for the first time. The resulting elongated amyloid fibrils were mechanically robust and stable. By using elongated amyloid fibrils, we have made self-healable amyloid fibril hydrogel and dye-absorbing aerogel.
ISSN
1742-7061
URI
https://hdl.handle.net/10371/184372
DOI
https://doi.org/10.1016/j.actbio.2022.04.012
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share