Publications

Detailed Information

Nasal symbiont Staphylococcus epidermidis restricts the cellular entry of influenza virus into the nasal epithelium

Cited 4 time in Web of Science Cited 4 time in Scopus
Authors

Jo, Ara; Won, Jina; Gil, Chan Hee; Kim, Su Keun; Lee, Kang-Mu; Yoon, Sang Sun; Kim, Hyun Jik

Issue Date
2022-04
Publisher
Nature Publishing Group | Nanyang Technological University
Citation
npj Biofilms and Microbiomes, Vol.8 No.1, p. 26
Abstract
Our recent study presented that human nasal commensal Staphylococcus epidermidis could potentiate antiviral immunity in the nasal mucosa through interferon-related innate responses. Here, we found that human nasal commensal S. epidermidis promoted protease-protease inhibitor balance in favor of the host and prevented influenza A virus (IAV) replication in the nasal mucosa and lungs. A relatively higher induction of Serpine1 exhibited in S. epidermidis-inoculated nasal epithelium and S. epidermidis-induced Serpine1 significantly decreased the expression of serine proteases. Furthermore, the transcription of urokinase plasminogen activator (uPA) and Serpine1 was biologically relevant in S. epidermidis-inoculated nasal epithelium, and the induction of uPA might be related to the sequential increase of Serpine1 in human nasal epithelium. Our findings reveal that human nasal commensal S. epidermidis manipulates the cellular environment lacking serine proteases in the nasal epithelium through Serpine1 induction and disturbs IAV spread to the lungs at the level of the nasal mucosa.
ISSN
2055-5008
URI
https://hdl.handle.net/10371/184763
DOI
https://doi.org/10.1038/s41522-022-00290-3
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share