Publications

Detailed Information

Concept for Temperature-Cascade Hydrogen Release from Organic Liquid Carriers Coupled with SOFC Power Generation

DC Field Value Language
dc.contributor.authorBrigljević, Boris-
dc.contributor.authorLee, Boreum-
dc.contributor.authorDickson, Rofice-
dc.contributor.authorKang, Sanggyu-
dc.contributor.authorLiu, J. Jay-
dc.contributor.authorLim, Hankwon-
dc.date.accessioned2022-11-22T08:39:48Z-
dc.date.available2022-11-22T08:39:48Z-
dc.date.created2022-09-27-
dc.date.created2022-09-27-
dc.date.issued2020-03-
dc.identifier.citationCell Reports Physical Science, Vol.1 No.3, p. 100032-
dc.identifier.issn2666-3864-
dc.identifier.urihttps://hdl.handle.net/10371/187147-
dc.description.abstractFor a sustainable hydrogen economy, large-scale transportation and storage of hydrogen becomes increasingly important. Typically, hydrogen is compressed or liquified, but both processes are energy intensive. Liquid organic hydrogen carriers (LOHCs) present a potential solution for mitigating these challenges while making use of the existing fossil fuel transportation infrastructure. Here, we present a process intensification strategy for improved LOHC dehydrogena- tion and an example of clean power generation using solid oxide fuel cells. Four LOHC candidates—ammonia, biphenyl-diphenylmethane eutectic mixture, N-phenylcarbazole, and N-ethylcarbazole—have been compared as stand-alone and integrated systems using comprehensive process simulation. Temperature cascade dehydrogenation was shown to increase the energy generated per unit mass (kWh/kg LOHC) by 1.3–2 times in an integrated system compared to stand-alone LOHC systems, thus providing a possibility for a positive impact on a LOHC-based hydrogen supply chain.-
dc.language영어-
dc.publisherElsevier-
dc.titleConcept for Temperature-Cascade Hydrogen Release from Organic Liquid Carriers Coupled with SOFC Power Generation-
dc.typeArticle-
dc.identifier.doi10.1016/j.xcrp.2020.100032-
dc.citation.journaltitleCell Reports Physical Science-
dc.identifier.wosid000658740500007-
dc.identifier.scopusid2-s2.0-85092272058-
dc.citation.number3-
dc.citation.startpage100032-
dc.citation.volume1-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorKang, Sanggyu-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusFUEL-CELL-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusAMMONIA-
dc.subject.keywordPlusMODEL-
dc.subject.keywordAuthorhydrogen economy-
dc.subject.keywordAuthorliquid organic hydrogen carriers-
dc.subject.keywordAuthorprocess design-
dc.subject.keywordAuthorprocess intensification-
dc.subject.keywordAuthortemperature cascade-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share