Publications

Detailed Information

PET분해효소의 활성분석방법 개발에 관한 연구 : Development of Activity Analysis Method for PET Degradation Enzyme

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

박태서

Advisor
김병기
Issue Date
2022
Publisher
서울대학교 대학원
Keywords
PET분해효소terephthalicacid(TPA)ethylacetate(EA)2-hydroxyterephthalate(HOTP)hcaoperontranscriptionalactivator(HcaR)바이오센서
Description
학위논문(석사) -- 서울대학교대학원 : 공과대학 화학생물공학부, 2022. 8. 김병기.
Abstract
Based on the petrochemical industry, various polymer materials have been synthesized since the 1950s. And today, the problem of plastic waste disposal is emerging all over the world. Among them, polyethylene terephthalate(PET) based on ester bonds occupies the largest proportion in plastic waste. Recently, starting with IsPETase, PET degradation enzymes such as leaf-branch compost cutinase(LCC) have been discovered in nature, and a method for decomposing PET waste is attracting attention. Furthermore, in terms of enzymatic engineering of these enzymes, studies to improve PET degradation-activity, which degrade PET to terephthalic acid(TPA), are also in the spotlight. However, to date, high throughput screening(HTS) for PET degradation-activity comparison of PET degradation enzyme mutants has not been reported properly.
In this study, two activity analysis method and screening system based on Escherichia coli, which will be the basis for the development of HTS for the comparison of PET degradation-activity in the future, were attempted.
First, TPA was synthesized with a fluorescent substance, 2-hydroxyterephthalate(HOTP), and then detected in vitro. It uses the principle that a hydroxyl radical combines with TPA to become HOTP. Hydroxyl radicals were generated under biological pH conditions using the Fe(II)-EDTA fenton reaction. To remove the autofluorescence reaction of LB media, a liquid extraction method using ethyl acetate(EA) was applied. A calibration curve with a positive correlation between TPA concentration and HOTP fluorescence intensity was obtained. The LOD value was measured to be 316.85 uM. To confirm the effectiveness of the HOTP screening assay, cross-validation was attempted by quantifying the fluorescence value of HOTP and TPA through HPLC. Under actual reaction conditions(70°C), the PET film was decomposed with His-tag purified LCC_wild-type and mutant-type enzymes. Among the comparative groups, it was confirmed that the quantitative value of TPA through HPLC was also high as the intensity of HOTP fluorescence value increased. This screening assay was named HOTPEA screening.
Second, it was attempted to confirm TPA in vivo through a biosensor using an activator and green fluorescent protein(GFP) on E.coli. As an activator, the hca operon transcriptional activator(HcaR) protein derived from the E.coli K12 genome was selected. Through Gibson assembly, an HcaR_4HBA biosensor using 4-hydroxybenzoic acid(4HBA) as a ligand was constructed. To change the substrate specificity for 4HBA to TPA, the protein tertiary crystal structure of HcaR_4HBA was predicted using homology modeling, and the mutation location for the ligand binding site was selected through docking simulation. Through reaction conditions and strain optimization, a fold change in GFP fluorescence value of about 6 times compared to the control was obtained for 1 mM 4HBA. Although the constructed HcaR_4HBA biosensor was analyzed through FACS, it was confirmed that there was a problem in the expression of GFP and HcaR. In terms of genetic engineering, there was a need to adjust the promoter responsible for hcaR expression. Therefore, using the T7 promoter, HcaR was overexpressed at various IPTG concentrations. In this case, when IPTG was not added, it was confirmed that the soluble expression of HcaR occurred well. Through this, it was confirmed that as the strength of the promoter was weakened and the soluble expression of HcaR increased, it was advantageous for the fluorescence reaction of the biosensor. Therefore, a new biosensor was constructed using the E.coli constitutive promoter with a weaker strength than the T7 promoter. Although the fluorescence response was not better than that of the existing biosensor using the promoter derived from the E.coli K12 genome, the J23100 promoter was used among the constitutive promoters and the best results were obtained. In addition, due to the ease of promoter engineering, as a follow-up study, the need to increase the fluorescence response of the biosensor was confirmed through combination with RBS of various strengths based on the J23100 promoter cassette.
Attempts to develop two activity analysis method and screening system for TPA detection are expected to contribute to eco-friendly PET treatment by helping to study mutations in PET degradation enzymes in the future.
석유화학산업을 기반으로 1950년대부터 다양한 폴리머 물질들이 합성되었다. 그리고 오늘날, 플라스틱 폐기물 처리문제가 전 세계적으로 대두되고 있다. 이 중, 에스터 결합을 기반으로 한 polyethylene terephthalate(PET)는 플라스틱 폐기물에서 가장 큰 비중을 차지하고 있다. 최근 IsPETase를 시작으로 leaf-branch compost cutinase(LCC)와 같은 PET분해효소들이 자연에서 발견되고 있으며, 이를 통해 폐 PET를 처리하는 방법이 주목을 받고 있다. 더 나아가 해당 효소들을 효소공학 측면에서, PET를 terephthalic acid(TPA)까지 분해하는 PET분해-activity를 향상하려는 연구들 또한 각광 받고 있다. 하지만 현재까지 PET분해효소 돌연변이들의 PET분해-activity 비교를 위한, High throughput screening(HTS)은 제대로 보고되지 않은 상태이다.
본 연구에서는 추후 PET분해-activity 비교를 위한 HTS 개발의 기초가 될, Escherichia coli 기반의 2가지 활성분석방법 및 스크리닝 시스템을 시도하였다.
첫째, TPA를 형광물질인 2-hydroxyterephthalate(HOTP)로 합성해 in vitro 상에서 검출하고자 하였다. hydroxyl radical이 TPA와 결합하여, HOTP가 되는 원리를 이용한다. Fe(II)-EDTA 펜톤반응을 이용해, 생물학적 pH조건에서 hydroxyl radical을 생성하였다. LB 배지의 autofluorescence 반응을 제거하기 위해, ethyl acetate(EA)를 사용한 액액 추출법을 적용하였다. TPA 농도와 HOTP 형광세기에 대한 양의 상관관계를 갖는 검량선을 얻을 수 있었다. LOD값은 316.85 uM로 확인되었다. HOTP screening assay의 유효성 확인을 위해, HOTP의 형광값과 HPLC를 통한 TPA 정량을 통해 교차검증 하고자 하였다. 실제 반응조건(70℃)에서, His-tag 정제한 LCC_야생형 및 돌연변이형 효소로 PET 필름을 분해하였다. 비교군 사이에서, HOTP 형광값 세기가 커짐에 따라 HPLC를 통한 TPA 정량값 또한 높게 나옴을 확인하였다. 해당 screening assay를 HOTPEA 스크리닝이라고 명명하였다.
둘째, TPA를 E.coli 상에서 활성인자와 green fluorescent protein(GFP)를 이용한 바이오센서를 통해 in vivo로 확인하고자 하였다. 활성인자로는 E.coli K12 genome 유래의 hca operon transcriptional activator(HcaR) 단백질을 선정하였다. 깁슨 어셈블리를 통해, 4-hydroxybenzoic acid(4HBA)를 리간드로 사용하는 HcaR_4HBA 바이오센서를 구축하였다. 4HBA에 대한 기질특이성을 TPA로 변화시키고자 HcaR_4HBA의 단백질 3차 결정구조를 homology modeling을 이용해 예측하였고, ligand binding site에 대한 돌연변이 위치는 docking 시뮬레이션을 통해 선정하였다. 반응조건 및 균주 최적화를 통하여, 1 mM 4HBA에 대해서, 대조군 대비 6배 정도의 GFP 형광값의 fold change를 얻었다. 구축한 HcaR_4HBA 바이오센서를 FACS를 통해 분석해보았지만, GFP와 HcaR 발현에 문제가 있음을 확인하였다. 유전공학 측면에서, hcaR 발현을 담당하는 프로모터를 조정해야할 필요성이 요구되었다. 그렇기에 T7 프로모터를 이용하여, HcaR을 다양한 IPTG 농도에서 과발현해보았다. 이 경우 IPTG를 넣어주지 않았을 때, HcaR의 soluble expression이 잘 일어남을 확인하였다. 이를 통해 프로모터의 세기가 약해짐에 따라 그리고 HcaR의 soluble expression의 증가함에 따라 바이오센서의 형광반응에 유리함을 확인하였다. 그렇기에 T7 프로모터보다 약한 세기의 E.coli constitutive 프로모터를 이용하여 새롭게 바이오센서를 구축하였다. E.coli K12 genome 유래의 프로모터를 사용한 기존의 바이오센서보다 더 좋은 형광반응을 얻진 못하였지만, constitutive 프로모터 중에선 J23100 프로모터를 사용한 경우에 가장 나은 결과를 얻었다. 또한 프로모터 엔지니어링에 대한 용이성 때문에, 후속연구로는 J23100 프로모터 cassette를 기반으로 다양한 세기의 RBS와의 조합을 통해, 바이오센서의 형광반응을 증가시킬 필요성이 확인되었다.
TPA 검출을 위한 2가지 활성분석방법 및 스크리닝 시스템 개발시도는, 앞으로 PET분해효소의 돌연변이 연구에 도움이 되어 친환경적 PET 처리에 기여할 것으로 사료된다.
Language
kor
URI
https://hdl.handle.net/10371/187832

https://dcollection.snu.ac.kr/common/orgView/000000173502
Files in This Item:
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share