Publications

Detailed Information

Development of Magnet System for Electron Paramagnetic Resonance Tooth Dosimetry and Application to in-vivo Assessment : 전자상자성공명 치아 누적 방사선량 측정을 위한 자석 개발 및 체내 선량평가에의 적용

DC Field Value Language
dc.contributor.advisor예성준-
dc.contributor.author최권-
dc.date.accessioned2022-12-29T08:40:52Z-
dc.date.available2022-12-29T08:40:52Z-
dc.date.issued2022-
dc.identifier.other000000172272-
dc.identifier.urihttps://hdl.handle.net/10371/188294-
dc.identifier.urihttps://dcollection.snu.ac.kr/common/orgView/000000172272ko_KR
dc.description학위논문(박사) -- 서울대학교대학원 : 융합과학기술대학원 융합과학부(방사선융합의생명전공), 2022. 8. 예성준.-
dc.description.abstractFor the triage purpose in the large radiation accident situation, the in vivo electron paramagnetic resonance (EPR) tooth dosimetry is a unique and useful tool. It can rapidly distinguish irradiated ones from others. For the counter accident, the mobility to move to the accident location is also an important factor. For this purpose, a new EPR magnet was developed with the lighter weight, and the in vivo optimized design in this thesis. This was also a part of the project to develop the entire EPR spectrometer comprehensively.
In the second part of the thesis, in vivo tooth dosimetry was described. Even with the dose-response curve acquired from extracted teeth, a dose-response data from in vivo measurements is required due to the different dosimetric sensitivity under in vivo circumstances, which is represented by Q factor. Also it was shown that there was difference in Q factor between individuals observed from volunteers teeth in their oral cavity. To reflect the difference between individuals, a new method was suggested. The newly suggested pseudo-in-vivo phantom did an important role in this method. The Q factor could be intentionally changed in the range of in vivo measurements.
Throughout the thesis, the performance of the developed magnet was verified through three steps. First, the magnetic flux density was measured and compared with the finite element method (FEM) simulation. Second, EPR spectrum was acquired from irradiated teeth as the preliminary test. For this, two intact human incisors irradiated 5 and 30 Gy with 220 kVp X-ray were measured. As the final test, EPR spectra was measured from post-radiotherapy patients and the tooth absorbed doses were assessed with in vivo measurement. For this, dose-response curves for various Q factors were acquired prior to the in vivo assessments. In the process to collect the dose-response data, the aforementioned pseudo-in-vivo phantom was used. Four intact human incisor teeth were used to collect the dose-response data. From the dose-response data, the Q factor relationships between the dosimetric sensitivity and background signal was acquired. From these relationships, a patient adopted dose-response curve was generated with a patients specific Q factor. The irradiated doses were assessed from two post-TBI patients with this method. Based on the dose-response curves, the doses which the patients were irradiated during the treatments were estimated.
-
dc.description.abstract대규모 방사선 사고 상황에서 부상자/환자 분류를 위한 목적에 있어 체내 전자상자성공명 치아 선량평가는 피폭된 환자를 신속하게 구분하는데 유일하면서도 유용한 방법이다. 방사선사고 대응에 있어서 사고현장으로 이동하여 사용할 수 있는 이동성은 중요한 요소로 작용한다. 전자상자성공명 분광계의 가장 무거운 부분은 자석이며, 이의 경량화 및 체내측정 최적화를 통해 치아 선량평가를 사고 현장에서 수행할 수 있도록 개발하는 것이 본 논문의 목적이다. 또한 이는 종합적으로 전자상자성공명 분광계 전체를 개발하고자 했던 지난 연구 프로젝트의 일환으로 수행되었다.
논문의 두번째 부분에서는 새로이 개발된 자석을 이용하여 체내 치아 선량평가를 수행한 내용이 설명된다. 발치된 치아로부터 선량-반응 곡선을 얻을 수 있지만 체내 환경에서 측정되는 선량-반응 정보는 선량 민감도가 다르기에 추가로 체내에서의 측정이 필요하다. 이 선량 민감도의 차이는 주로 Q 팩터의 차이를 통해 나타나게 된다. 방사선을 조사받지 않은 지원자들의 구강 내 치아로부터 체내 Q 팩터에 개인차가 있음을 확인하였다. 이 개인차를 반영하기 위한 새 방법이 본 논문에서 제안되었다. 논문에서 제작, 제안한 의사 체내 팬텀이 이 방법에서 중요한 역할을 하였다. Q 팩터를 체내 Q 팩터의 범위 내에서 의도적으로 변화시키는 것이다.
논문 전체에 걸쳐 새로 개발된 자석의 성능을 세 단계에 걸쳐 검증하였다. 첫번째로, 자석의 자속밀도를 측정하고 유한요소해석 시뮬레이션과 비교하였다. 두번째로, 방사선 조사된 발치 치아에서 전자상자성공명 스펙트럼을 획득하는 기초 테스트를 수행하였다. 여기에는 220 kVp 에너지 X-선으로 5 Gy와 30 Gy를 조사한 온전한 인간 중절치 두 개가 사용되었다. 마지막 검증 테스트로, 방사선치료 후 환자의 치아를 체내 측정하여 선량을 평가하였다. 이를 위해 사전에 Q 여러 Q 팩터에 대한 선량-반응 곡선을 얻었다. 이 선량-반응 정보를 수집하는 과정에서 앞서 언급한 의사 체내 팬텀이 사용되었다. 온전한 인간 중절치 4개로부터 선량-반응 곡선을 얻었다. 이 선량-반응 정보로부터, Q 팩터와 선량 민감도 및 배경신호의 관계를 획득할 수 있었으며, 이로부터 환자의 Q 팩터에 맞춰 환자 맞춤 선량-반응 곡선이 생성되었다. 이 맞춤 선량-반응 곡선을 기반으로 환자가 치료 중 조사된 선량을 평가하였다.
-
dc.description.tableofcontentsChapter 1. Development of EPR Spectrometer 1

1. Basics of Electron Paramagnetic Resonance 1
1.1. Principle of Electron Paramagnetic Resonance 1
1.2. Principle of Continuous Wave EPR Spectrometer 4

2. Development of in vivo EPR Spectrometer 6
2.1. The Motivation of the Development 6
2.1.1. In Vivo Tooth Dosimetry 6
2.1.2. Motivation of the Study 7

3. The Development of the Magnet for in vivo EPR Spectroscopy 8
3.1. The Motivation of the Development 8
3.2. Materials and Methods 11
3.2.1. Design Concept and Required Specifications 11
3.2.2. EPR Magnet Configuration 13
3.2.3. EPR Magnet Design 15
3.2.4. Analytical Calculation of Magnetic Flux Density of PMs 17
3.2.5. Magnetic Field Simulation 20
3.2.6. Magnetic Field Measurement 22
3.2.7. EPR Spectrum Acquisition 23
3.3. Results 25
3.3.1. Characteristics of Prototype Magnet System 25
3.3.2. The Magnet System Building 26
3.3.3. Prototype Magnet System 28
3.3.4. Sweep Coil 33
3.3.5. Modulation Coil Measurement 35
3.3.6. EPR Spectrum Acquisition 37
3.3.7. Thermal Stability of the Magnet 39
3.4. Discussions 41
3.4.1. Baseline Distortion of EPR Spectrum 41
3.4.2. Calibration of Modulation Coil and Sweep Coils 45
3.5. Conclusion of the Magnet Development 47


Chapter 2. In Vivo Dosimetry Method Using Pseudo-In-Vivo Phantom 48

1. Introduction 48

2. Materials and Methods 52
2.1. Pseudo-In-Vivo Phantom 52
2.2. Q Factor Measurements 54
2.3. Tooth Irradiation 56
2.4. EPR Instrument and Measurement 58
2.5. Correction with Area of Tooth Enamel 60
2.6. Post-Radiotherapy Patients In Vivo Dose Assessment 61

3. Results and Discussions 63
3.1. Measurement of Quality Factor 63
3.2. Dose-Response Calibration Curve 66
3.3. Sensitivity and Background Signal of an Arbitrary Q Factor 69
3.4. Verification of Sensitivity Difference Between Two Irradiation Situations 73
3.4.1. Experimental Verification 73
3.4.2. Verification Through Monte Carlo Simulation 79
3.5. Measurements of Post-Radiotherapy Patients 81
3.6. Effect of Irradiation Geometry of Post-Radiotherapy Patients 87
3.7. Inverse Prediction for Dose Estimation 91
3.8. Discussion About Error Level of the Post-Treatment Patients 93
3.9. Q Factor Correction: Another Method to Compensate for the Q Factor Effect 94
3.9.1. Results of Q Factor Correction 96
3.9.2. Comparison of Two Q Factor Reflection Methods 99


Chapter 3. Conclusion 100


Bibliography 101
List of Abbreviation 105
Abstract in Korean 106
-
dc.format.extentxii, 107-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectElectronparamagneticresonance-
dc.subjectInvivodosimetry-
dc.subjectEPRtoothdosimetry-
dc.subjectPseudo-in-vivophantom-
dc.subjectQfactorvariable-
dc.subjectTotalbodyirradiation-
dc.subject.ddc539.2-
dc.titleDevelopment of Magnet System for Electron Paramagnetic Resonance Tooth Dosimetry and Application to in-vivo Assessment-
dc.title.alternative전자상자성공명 치아 누적 방사선량 측정을 위한 자석 개발 및 체내 선량평가에의 적용-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorKwon Choi-
dc.contributor.department융합과학기술대학원 융합과학부(방사선융합의생명전공)-
dc.description.degree박사-
dc.date.awarded2022-08-
dc.identifier.uciI804:11032-000000172272-
dc.identifier.holdings000000000048▲000000000055▲000000172272▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share