Publications

Detailed Information

The Reaction Mechanism and Capacity Degradation Model in Lithium Insertion Organic Cathodes, Li2C6O6, Using Combined Experimental and First Principle Studies

Cited 77 time in Web of Science Cited 76 time in Scopus
Authors

Kim, Haegyeom; Seo, Dong-Hwa; Yoon, Gabin; Goddard, William A., III; Lee, Yun Sung; Yoon, Won-Sub; Kang, Kisuk

Issue Date
2014-09
Publisher
American Chemical Society
Citation
Journal of Physical Chemistry Letters, Vol.5 No.17, pp.3086-3092
Abstract
Herein, we explore the capacity degradation of dilithium rhodizonate salt (Li2C6O6) in lithium rechargeable batteries based on detailed investigations of the lithium de/insertion mechanism in Li2C6O6 using both electrochemical and structural ex situ analyses combined with first-principles calculations. The experimental observations indicate that the LixC6O6 electrode undergoes multiple two-phase reactions in the composition range of 2 <= x <= 6; however, the transformations in the range 2 <= x <= 4 involve a major morphological change that eventually leads to particle exfoliation and the isolation of active material. Through firstprinciples analysis of LixC6O6 during de/lithiation, it was revealed that particle exfoliation is closely related to the crystal structural changes with lithium deinsertion from C6O6 interlayers of the LixC6O6. Among the lithium ions found at various sites, the extraction of lithium from C6O6 interlayers at 2 <= x <= 4 decreases the binding force between the C6O6 layers, promoting the exfoliation of C6O6 layers and pulverization at the electrode, which degrades capacity retention.
ISSN
1948-7185
URI
https://hdl.handle.net/10371/189823
DOI
https://doi.org/10.1021/jz501557n
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share