Publications

Detailed Information

Auxin mediates the touch-induced mechanical stimulation of adventitious root formation under windy conditions in Brachypodium distachyon

DC Field Value Language
dc.contributor.authorNam, Bo Eun-
dc.contributor.authorPark, Young-Joon-
dc.contributor.authorGil, Kyung-Eun-
dc.contributor.authorKim, Ju-Neon-
dc.contributor.authorKim, Jae Geun-
dc.contributor.authorPark, Chung-Mo-
dc.date.accessioned2023-04-18T05:16:44Z-
dc.date.available2023-04-18T05:16:44Z-
dc.date.created2020-08-13-
dc.date.created2020-08-13-
dc.date.created2020-08-13-
dc.date.issued2020-07-
dc.identifier.citationBMC Plant Biology, Vol.20 No.1, p. 335-
dc.identifier.issn1471-2229-
dc.identifier.urihttps://hdl.handle.net/10371/190011-
dc.description.abstractBackground It is widely perceived that mechanical or thigmomorphogenic stimuli, such as rubbing and bending by passing animals, wind, raindrop, and flooding, broadly influence plant growth and developmental patterning. In particular, wind-driven mechanical stimulation is known to induce the incidence of radial expansion and shorter and stockier statue. Wind stimulation also affects the adaptive propagation of the root system in various plant species. However, it is unknown how plants sense and transmit the wind-derived mechanical signals to launch appropriate responses, leading to the wind-adaptive root growth. Results Here, we found thatBrachypodium distachyon, a model grass widely used for studies on bioenergy crops and cereals, efficiently adapts to wind-mediated lodging stress by forming adventitious roots (ARs) from nonroot tissues. Experimental dissection of wind stimuli revealed that not bending of the mesocotyls but physical contact of the leaf nodes with soil particles triggers the transcriptional induction of a group of potential auxin-responsive genes encoding WUSCHEL RELATED HOMEOBOX and LATERAL ORGAN BOUNDARIES DOMAIN transcription factors, which are likely to be involved in the induction of AR formation. Conclusions Our findings would contribute to further understanding molecular mechanisms governing the initiation and development of ARs, which will be applicable to crop agriculture in extreme wind climates.-
dc.language영어-
dc.publisherBioMed Central-
dc.titleAuxin mediates the touch-induced mechanical stimulation of adventitious root formation under windy conditions in Brachypodium distachyon-
dc.typeArticle-
dc.identifier.doi10.1186/s12870-020-02544-8-
dc.citation.journaltitleBMC Plant Biology-
dc.identifier.wosid000552412200002-
dc.identifier.scopusid2-s2.0-85088494977-
dc.citation.number1-
dc.citation.startpage335-
dc.citation.volume20-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorKim, Jae Geun-
dc.contributor.affiliatedAuthorPark, Chung-Mo-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusCELL FATE-
dc.subject.keywordPlusETHYLENE-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusGENE-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusNITROGEN-
dc.subject.keywordPlusMAIZE-
dc.subject.keywordPlusACID-
dc.subject.keywordPlusRICE-
dc.subject.keywordPlusTHIGMOMORPHOGENESIS-
dc.subject.keywordAuthorAdventitious root-
dc.subject.keywordAuthorAuxin-
dc.subject.keywordAuthorBrachypodium distachyon-
dc.subject.keywordAuthorGravity-
dc.subject.keywordAuthorLodging-
dc.subject.keywordAuthorThigmomorphogenesis-
dc.subject.keywordAuthorWind-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share