Publications

Detailed Information

An Adaptive and Memory Efficient Algorithm for Genotype Imputation

Cited 2 time in Web of Science Cited 3 time in Scopus
Authors

Kang, Hyun Min; Zaitlen, Noah A.; Han, Buhm; Eskin, Eleazar

Issue Date
2009-05
Publisher
Springer Verlag
Citation
Lecture Notes in Computer Science, Vol.5541, pp.482-495
Abstract
Genome wide association studies have proven to be a highly successful method for identification of genetic loci for complex phenotypes in both humans and model organisms. These large scale studies rely oil the collection of hundreds of thousands of single nucleotide polymorphisms (SNPs) across the genome. Standard high-throughput genotyping technologies capture only a fraction of the total genetic variation. Recent efforts have shown that it is possible to "impute" with high accuracy the genotypes of SNPs that are not collected ill the study provided that they are present in a reference data set which contains both SNPs collected in the Study as well as other SNPs. We here introduce a novel HMM based technique to solve the imputation problem that addresses several shortcomings of existing methods. First, our method is adaptive which lets it estimate population genetic parameters from the data and be applied to model organisms that have very different evolutionary histories. Compared to traditional methods. Our method is tip to tell times more accurate on model organisms such as mouse. Second, our algorithm scales in memory usage in the number of collected markers as opposed to the number of known SNPs. This issue is very relevant due to the size of the reference data sets currently being generated. We compare our method over mouse and human data sets to existing methods and show that each has either comparable or better performance and much lower memory usage. The method is available for download at http://genetics.cs.ucla.edu/eminim.
ISSN
0302-9743
URI
https://hdl.handle.net/10371/191658
DOI
https://doi.org/10.1007/978-3-642-02008-7_34
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Medicine
  • Department of Medicine
Research Area Bioinformatics, Computational Biology, Genomics, Human Leukocyte Antigen, Statistical Genetics

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share