Publications

Detailed Information

Mechanochemistry-driven engineering of 0D/3D heterostructure for designing highly luminescent Cs–Pb–Br perovskites : Mechanochemistry-driven engineering of 0D/3D heterostructure for designing highly luminescent Cs-Pb-Br perovskites

Cited 21 time in Web of Science Cited 22 time in Scopus
Authors

Baek, Kyeong-Yoon; Lee, Woocheol; Lee, Jonghoon; Kim, Jaeyoung; Ahn, Heebeom; Kim, Jae Il; Kim, Junwoo; Lim, Hyungbin; Shin, Jiwon; Ko, Yoon-Joo; Lee, Hyeon-Dong; Friend, Richard H.; Lee, Tae-Woo; Lee, Jeongjae; Kang, Keehoon; Lee, Takhee

Issue Date
2022-07
Publisher
Nature Publishing Group
Citation
Nature Communications, Vol.13 No.1, p. 4263
Abstract
While emission and stability of metal-halide perovskites can be enhanced through heterostructural encapsulation, a controlled synthesis route to such structures is not trivial to realize. Here, the authors design a mechanochemistry-driven protocol for synthesizing highly luminescent CsPbBr3/Cs4PbBr6 heterostructures. Embedding metal-halide perovskite particles within an insulating host matrix has proven to be an effective strategy for revealing the outstanding luminescence properties of perovskites as an emerging class of light emitters. Particularly, unexpected bright green emission observed in a nominally pure zero-dimensional cesium-lead-bromide perovskite (Cs4PbBr6) has triggered intensive research in better understanding the serendipitous incorporation of emissive guest species within the Cs4PbBr6 host. However, a limited controllability over such heterostructural configurations in conventional solution-based synthesis methods has limited the degree of freedom in designing synthesis routes for accessing different structural and compositional configurations of these host-guest species. In this study, we provide means of enhancing the luminescence properties in the nominal Cs4PbBr6 powder through a guided heterostructural configuration engineering enabled by solid-state mechanochemical synthesis. Realized by an in-depth study on time-dependent evaluation of optical and structural properties during the synthesis of Cs4PbBr6, our target-designed synthesis protocol to promote the endotaxial formation of Cs4PbBr6/CsPbBr3 heterostructures provides key insights for understanding and designing kinetics-guided syntheses of highly luminescent perovskite emitters for light-emitting applications.
ISSN
2041-1723
URI
https://hdl.handle.net/10371/192283
DOI
https://doi.org/10.1038/s41467-022-31924-x
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share