Publications

Detailed Information

Paradoxical association of TET loss of function with genome-wide DNA hypomethylation

Cited 63 time in Web of Science Cited 65 time in Scopus
Authors

López-Moyado, Isaac F.; Tsagaratou, Ageliki; Yuita, Hiroshi; Seo, Hyungseok; Delatte, Benjamin; Heinz, Sven; Benner, Christopher; Rao, Anjana

Issue Date
2019-08
Publisher
National Academy of Sciences
Citation
Proceedings of the National Academy of Sciences of the United States of America, Vol.116 No.34, pp.16933-16942
Abstract
Cancer genomes are characterized by focal increases in DNA methylation, co-occurring with widespread hypomethylation. Here, we show that TET loss of function results in a similar genomic footprint. Both 5hmC in wild-type (WT) genomes and DNA hypermethylation in TET-deficient genomes are largely confined to the active euchromatic compartment, consistent with the known functions of TET proteins in DNA demethylation and the known distribution of 5hmC at transcribed genes and active enhancers. In contrast, an unexpected DNA hypomethylation noted in multiple TET-deficient genomes is primarily observed in the heterochromatin compartment. In a mouse model of T cell lymphoma driven by TET deficiency (Tet2/3 DKO T cells), genomic analysis of malignant T cells revealed DNA hypomethylation in the heterochromatic genomic compartment, as well as reactivation of repeat elements and enrichment for single-nucleotide alterations, primarily in heterochromatic regions of the genome. Moreover, hematopoietic stem/precursor cells (HSPCs) doubly deficient for Tet2 and Dnmt3a displayed greater losses of DNA methylation than HSPCs singly deficient for Tet2 or Dnmt3a alone, potentially explaining the unexpected synergy between DNMT3A and TET2 mutations in myeloid and lymphoid malignancies. Tet1-deficient cells showed decreased localization of DNMT3A in the heterochromatin compartment compared with WT cells, pointing to a functional interaction between TET and DNMT proteins and providing a potential explanation for the hypomethylation observed in TET-deficient genomes. Our data suggest that TET loss of function may at least partially underlie the characteristic pattern of global hypomethylation coupled to regional hypermethylation observed in diverse cancer genomes, and highlight the potential contribution of heterochromatin hypomethylation to oncogenesis.
ISSN
0027-8424
URI
https://hdl.handle.net/10371/192601
DOI
https://doi.org/10.1073/pnas.1903059116
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Pharmacy
  • Department of Manufacturing Pharmacy
Research Area Gene Signalling, Immunology, Transcriptional Networking

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share