Publications

Detailed Information

Rational Core-Shell Design of Open Air Low Temperature In Situ Processable CsPbI3 Quasi-Nanocrystals for Stabilized p-i-n Solar Cells

Cited 51 time in Web of Science Cited 52 time in Scopus
Authors

Xi, Jun; Piao, Chengcheng; Byeon, Junseop; Yoon, Jungjin; Wu, Zhaoxin; Choi, Mansoo

Issue Date
2019-08
Publisher
Wiley-VCH Verlag
Citation
Advanced Energy Materials, Vol.9 No.31, p. 1901787
Abstract
As a promising alternative, inorganic perovskite nanocrystals allow reinforced stability of photovoltaic device. Unfortunately, directly assembling these nanocrystals into film is uncontrollable. Instead, in situ assembling technology under low temperature in open air is attractive but limited due to the tendency of nonperovskite transition. The adverse shell ligands and unstable core lattices are known as the fundamental problems. In order to address this issue, here proposed is a rational core-shell design: 1) with respect to ligands, a new one, 4-fluorophenethylammonium iodide, is used to enhance bonding force and charge coupling between ligands and nanocrystals; 2) with respect to lattices, a novel compound H2PbI4 is employed to assist divalent ion (Mn2+) doping into perovskite lattices. By low temperature in situ processing CsPbI3 quasi-nanocrystal film, the highest power conversion efficiency of 13.4% for p-i-n solar cells is achieved, which retains 92% after 500 h in ambient air. The current study underlines the significance of rational hierarchical design of inorganic perovskite nanocrystals, especially for low temperature in situ processable electronic devices.
ISSN
1614-6832
URI
https://hdl.handle.net/10371/192605
DOI
https://doi.org/10.1002/aenm.201901787
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share