Publications

Detailed Information

Limitations of gene editing assessments in human preimplantation embryos

Cited 9 time in Web of Science Cited 8 time in Scopus
Authors

Liang, Dan; Mikhalchenko, Aleksei; Ma, Hong; Marti Gutierrez, Nuria; Chen, Tailai; Lee, Yeonmi; Park, Sang-Wook; Tippner-Hedges, Rebecca; Koski, Amy; Darby, Hayley; Li, Ying; Van Dyken, Crystal; Zhao, Han; Wu, Keliang; Zhang, Jingye; Hou, Zhenzhen; So, Seongjun; Han, Jongsuk; Park, Jumi; Kim, Chong-Jai; Zong, Kai; Gong, Jianhui; Yuan, Yilin; Gu, Ying; Shen, Yue; Olson, Susan B.; Yang, Hui; Battaglia, David; O'Leary, Thomas; Krieg, Sacha A.; Lee, David M.; Wu, Diana H.; Duell, P. Barton; Kaul, Sanjiv; Kim, Jin-Soo; Heitner, Stephen B.; Kang, Eunju; Chen, Zi-Jiang; Amato, Paula; Mitalipov, Shoukhrat

Issue Date
2023-03
Publisher
Nature Publishing Group
Citation
Nature Communications, Vol.14 No.1, p. 1219
Abstract
Range of DNA repair in response to double-strand breaks induced in human preimplantation embryos remains uncertain due to the complexity of analyzing single- or few-cell samples. Sequencing of such minute DNA input requires a whole genome amplification that can introduce artifacts, including coverage nonuniformity, amplification biases, and allelic dropouts at the target site. We show here that, on average, 26.6% of preexisting heterozygous loci in control single blastomere samples appear as homozygous after whole genome amplification indicative of allelic dropouts. To overcome these limitations, we validate on-target modifications seen in gene edited human embryos in embryonic stem cells. We show that, in addition to frequent indel mutations, biallelic double-strand breaks can also produce large deletions at the target site. Moreover, some embryonic stem cells show copy-neutral loss of heterozygosity at the cleavage site which is likely caused by interallelic gene conversion. However, the frequency of loss of heterozygosity in embryonic stem cells is lower than in blastomeres, suggesting that allelic dropouts is a common whole genome amplification outcome limiting genotyping accuracy in human preimplantation embryos. DNA repair in response to DSBs in the preimplantation embryo is hard to analyze. Here the authors show that over 25% of pre-existing heterozygous loci in control single blastomere samples appeared as homozygous after whole genome amplification, therefore, they validated gene editing seen in human embryos in ESCs.
ISSN
2041-1723
URI
https://hdl.handle.net/10371/192804
DOI
https://doi.org/10.1038/s41467-023-36820-6
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Natural Sciences
  • Department of Chemistry
Research Area Biology and Biochemistry

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share