Publications

Detailed Information

Effect of intrinsic electromagnetic field inside the nanopores of carbonaceous materials on their hydrogen storage behavior : 탄소 기반 소재의 나노 기공 내부의 내재적 전자기장이 수소 저장 거동에 미치는 영향

DC Field Value Language
dc.contributor.advisor박종래-
dc.contributor.author소순형-
dc.date.accessioned2023-06-29T01:53:53Z-
dc.date.available2023-06-29T01:53:53Z-
dc.date.issued2023-
dc.identifier.other000000174865-
dc.identifier.urihttps://hdl.handle.net/10371/193182-
dc.identifier.urihttps://dcollection.snu.ac.kr/common/orgView/000000174865ko_KR
dc.description학위논문(박사) -- 서울대학교대학원 : 공과대학 재료공학부, 2023. 2. 박종래.-
dc.description.abstractHydrogen energy is a promising renewable energy and specifically, hydrogen storage is a bottleneck to commercializing hydrogen energy. Researchers have relied on the synthesis of porous materials in physisorption and lowering the H2 binding energy of hydride materials in chemisorption, all of which have been conducted in a similar manner respectively. However, the development of hydrogen storage materials applicable to onboard system isnt found yet.
To date, the representative governing parameters in the research field of hydrogen storage material are specific surface area and the H2 binding energy, the binding energy between the adsorbent and H2 molecule. To investigate their effectiveness, the established working principle and previously reported results were re-examined and the contents including conventional hydrogen storage technology were presented in Chapter 1. Consequently, several outstanding hydrogen storage performance were identified while it couldnt be explained with the governing parameters. In this regard, I noted the phenomenon of eccentric H2 storage in carbon nanopores with sub-1 nm diameters reported earlier, finding a lack of deep research on the fundamentals of this phenomenon. I formulate a hypothesis of H2 storage by intrinsic EMF (IEMF) interaction and Chapter 2 provides the results of verification of hypothesis by building slit carbon nanopore and cylindrical carbon nanopore. The key result of this research is that the resultant IEMF by overlapping carbon walls forms inside the carbon nanopore and it forms differently depending on its morphology. Next, I raise questions about how to modulate the IEMF inside the carbon nanopore practically and whether it is correlated to hydrogen storage performance. Therefore, the further research is conducted and the results are presented in Chapter 3 and 4. It is confirmed that IEMF inside the carbon nanopore can be modulated effectively by tuning pore diameter and atomic composition, which are typical methods to control gas adsorption properties. Moreover, it is found that its modulation is highly correlated to hydrogen storage performance, making a breakthrough in designing hydrogen storage materials. This research covers host-guest interaction in addition to the unusual phenomenon occurring in the carbon nanopore with a diameter of sub-1nm and consequently, gives a new insight on other research fields (e.g., supercapacitor, battery, catalyst). On that basis, we successfully synthesize nitrogen plasma-treated N-doped microporous carbon that contains large pore volume below 1 nm and small amount of nitrogen and measure its hydrogen storage performance at room temperature (Chapter 5).
-
dc.description.abstract유망한 재생에너지인 수소 에너지를 상용화하기 위해서는 안전하고 많은 양의 수소를 저장, 이송할 수 있는 기술이 시급히 개발되어야 한다. 현재 상용화를 목적으로 고려되고 있는 압축 방식과 액화 방식은 고압으로 인한 안정성 문제와 외부 열 유입에 의한 boil-off 문제를 해결하지 못하고 있는 실정이다. 이에 대한 하나의 대안 기술로 흡착현상을 이용한 수소저장 연구가 많이 이루어졌지만 아직까지는 대안으로서의 가능성은 보여주지 못하고 있다. 그러나 다수의 선행연구에서는 특정 크기의 나노 기공 조건에서 액체 수소의 밀도를 보이는 고밀도 수소저장이 가능함을 보고하고 있다. 따라서 이 연구에서는 그러한 고밀도 수소저장이 가능한 원인을 규명하여 상온에서도 고밀도 수소 저장을 할 수 있는 수소저장재 개발의 과학기술적 가이드라인을 제시하고자 한다. Part 1에서는 수소 저장 분야에 관해 전반적인 소개와 심층적인 수소저장 메커니즘 규명의 필요성을 강조하였다. Part 2에서는 내재적 전자기장에 의한 수소저장이라는 가설을 검증하는 연구를 수행하였다. 몰폴로지, 기공 크기, 원자 조성에 따라 내재적 전자기장이 유의미하게 변조되었고, 이는 수소저장성능과 밀접한 상관성이 있음을 보였다. Part 3에서는 앞서 검증된 가설을 바탕으로 질소 플라즈마 처리를 통해 직경 1 nm 미만 기공 부피와 질소 함량을 동시에 증가시킴으로써 소재의 상온 수소저장성능을 증대시킨 연구 결과를 제시하였다. 이 연구는 직경 1nm 미만 탄소나노기공에서 발생하는 특이한 현상뿐만 아니라 호스트-게스트 상호작용 개념을 포괄하기 때문에 결과적으로 다른 연구 분야(예: 슈퍼커패시터, 배터리, 촉매)에 대한 새로운 통찰력을 제공할 수 있을 것으로 기대된다.-
dc.description.tableofcontentsPart I. General introduction to H2 storage research 1

Chapter 1. Introduction 2
1.1. Importance of the development for hydrogen energy 2
1.2. Conventional methods to store hydrogen 3
1.2.1. Compression
1.2.2. Liquefaction
1.3. Theoretical background of previous hydrogen storage research 5
1.4. State-of-the-art of hydrogen storage materials and their facing limitations 7
1.4.1. Physisorption-based storage of molecular hydrogen
1.4.2. Storage of H atom by chemisorption
1.4.3. Modulation of the H2 binding energy by various strategies
1.4.3.1. By increasing the H2 binding energy (10.0-21.7 kJ/mol) with the introduction of heteroatoms into porous materials
1.4.3.2. By increasing the H2 binding energy (6.1 ~ 21.0 kJ/mol) via coordinatively unsaturated metal sites of MOFs
1.4.3.3. By increasing the H2 binding energy (5.3 ~ 13.3 kJ/mol) via the effect of H2 nanoconfinement in the nanopore of sub-1nm
1.4.3.4. By modulating the H2 binding energy (0.5 ~ 50.2 kJ/mol) via exploiting the orbital interaction between H2 molecules and adsorbents
1.5. Scope and aim of present work 38

Part II. Verification of assumption on H2 storage by intrinsic electromagnetic field (IEMF) interaction 40

Chapter 2. Identification of the correlation and abnormal H2 storage in carbon nanopores with sub-1 nm diameters 41
2.1. Introduction 41
2.2. Experimental method 44
2.3. Result and discussion 48
2.4. Conclusion 60

Chapter 3. Validation of effective IEMF modulation with variations in pore size and atomic composition 62
3.1. Introduction 62
3.2. Experimental method 63
3.3. Result and discussion 65
3.4. Conclusion 72

Chapter 4. Investigation of correlation between HDI and IEMF modulation within the specific systems 73
4.1. Introduction 73
4.2. Experimental method 73
4.3. Result and discussion 75
4.4. Conclusion 82

Part III. Development of materials with high performance of H2 storage by controlling IEMF interaction 83

Chapter 5. Preparation and characterization of carbon-based material with adjustment to morphology and atomic composition 83
5.1. Introduction 83
5.2. Experimental method 84
5.3. Result and discussion 86
5.4. Conclusion 91

Part IV. Conclusions 92

Chapter 6. Concluding remarks and future plan 93

Bibliography 95
Abstract in Korean 110
-
dc.format.extentvi, 112-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjecthydrogen storage-
dc.subjectintrinsic electromagnetic field-
dc.subjectcarbon nanopore-
dc.subjecthost-guest interaction-
dc.subject.ddc620.1-
dc.titleEffect of intrinsic electromagnetic field inside the nanopores of carbonaceous materials on their hydrogen storage behavior-
dc.title.alternative탄소 기반 소재의 나노 기공 내부의 내재적 전자기장이 수소 저장 거동에 미치는 영향-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorSoon Hyeong So-
dc.contributor.department공과대학 재료공학부-
dc.description.degree박사-
dc.date.awarded2023-02-
dc.identifier.uciI804:11032-000000174865-
dc.identifier.holdings000000000049▲000000000056▲000000174865▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share