Publications

Detailed Information

Numerical Investigation of unsteady characteristics in inflight icing via quasi-unsteady approach : 준비정상상태 해석을 통한 항공기 결빙의 비정상 특성에 관한 수치적 연구

DC Field Value Language
dc.contributor.advisor이관중-
dc.contributor.author민승인-
dc.date.accessioned2023-06-29T02:01:24Z-
dc.date.available2023-06-29T02:01:24Z-
dc.date.issued2023-
dc.identifier.other000000175430-
dc.identifier.urihttps://hdl.handle.net/10371/193383-
dc.identifier.urihttps://dcollection.snu.ac.kr/common/orgView/000000175430ko_KR
dc.description학위논문(박사) -- 서울대학교대학원 : 공과대학 항공우주공학과, 2023. 2. 이관중.-
dc.description.abstractAccurate prediction of ice shape for inflight icing is crucial in preventing operational incidents during flight. As inflight icing is a phenomenon that involves a wide range of variables, the issue in developing simulation tools was numerical efficiency in its early stage. The quasi-steady approach was introduced to resolve inflight icing simulations involving parameters with various sizes, which provided a general inflight icing analysis method using a steady solution for each parameter and a multi-shot method. While this method effectively accounted for aerodynamic change due to ice accretion with low computation resources, it neglected the unsteady characteristic that should be addressed for accuracy. Modeling aerodynamic unsteadiness in moving objects like rotorcraft was one issue, and microscopic surface roughness growth in ice accretion was another. Prior studies have continuously addressed these issues, and if resolved, inflight icing code accuracy and versatility can be increased.
The present study relieved issues related to unsteadiness that may appear during inflight icing via quasi-unsteady assumption. The quasi-unsteady approach simultaneously solves the air, droplet field, and surface water film, thus taking into timely account variation during the icing process. Based on a quasi-unsteady assumption, the inflight icing simulation has been applied to oscillating airfoil cases. The dynamic mesh technique was used for oscillating motion. This study also adopted a novel model to simulate the roughness distribution and its effect on the transition to improve shape prediction. The roughness distribution is analytically determined based on the maximum water bead height and residual water film. As the thermodynamic module was related to the roughness module, a quasi-unsteady manner was adopted to deliver the roughness effect on the boundary layer. The roughness amplification parameter and transition turbulence model simulated the roughness interaction with the boundary layer.
Thus, the quasi-unsteady approach exhibited good agreement for ice shapes compared to the previous numerical research. This study analyzed the unsteady effect owing to body motion on collection efficiency and convective heat transfer using the quasi-unsteady approach. Furthermore, as in the quasi-steady case, this approach demonstrated that the roughness and laminar-turbulent transition model for the oscillating airfoil could improve the prediction of the ice shape. The convective heat transfer coefficient on the iced surface and ice shape was predicted and compared with the fully turbulent model and experiment result. The results obtained from this approach using the improved model exhibited good agreement with previously reported experimental results indicating the consideration of unsteadiness is essential for prediction accuracy.
-
dc.description.abstract항공기 결빙 형상을 정확히 예측하는 것은 비행 운영 안정성을 확보하는데 중요하다. 항공기 결빙 현상에는 다양한 단위를 갖는 변수들이 관여하므로, 초기 수치해석 도구를 개발할 때에는 수치적 효율성을 고려하고자 하였다. 이러한 변수들간의 단위 차이를 해결하기 위해서 일반적인 항공기 결빙 해석 코드들은 준정상 가정을 도입하였다. 해당 방법은 각 변수들에 대해 정상상태 해와 멀티샷 방법을 사용하였다. 해당 방법은 수치적인 효율성을 달성하였으나, 결빙 해석의 정확성에 영향을 줄 수 있는 비정상 특성을 일부 고려하지 못하였다. 이러한 비정상 특성은 항공기와 같이 움직이는 물체의 공기역학적 비정상성을 모델링하는 것과 표면에서의 미세한 표면 거칠기 변화를 포함한다. 이전의 연구에서는 결빙 해석 코드의 정확도와 적용 범위를 올리기 위하여 해당 문제들을 해결하기 위해 노력하였다.
본 연구는 준비정상 가정을 통해 항공기 결빙에서 나타날 수 있는 비정상과 관련된 문제들을 완화하고자 하였다. 준비정상 해석은 유동과 공기 중의 액적 및 표면에서의 수막 방정식을 동시에 해석하므로 결빙 과정 중 나타날 수 있는 비정상 특성을 고려할 수 있다. 준비정상 해석 방법을 기반으로 진동하는 익형에 대하여 항공기 결빙 해석을 진행하였다. 진동하는 익형의 움직임을 고려하기 위해서 동적 격자 방법을 사용하였다. 해당 연구는 또한 결빙 형상 예측의 정확도를 위해, 거칠기 분포 모델과 난류 천이를 고려할 수 있는 새로운 모델을 제시하였다. 해당 모델은 거칠기 증폭 변수와 난류 천이 모델을 통해 거칠기와 경계층 사이의 상호 작용을 보몄다.
준 비정상 해석은 기존의 수치 해석 연구와 비교했을때 결빙 형상을 더 정확하게 예측하였다. 본 연구에서는 준 비정상 해석방법이 물체의 움직임에 따른 비정상 특성이 액적의 수집 효율과 표면의 대류 열전달에 미치는 영향을 보였으며, 기존의 준 정상 해석방법과 같이 진동하는 익형에 대해서 거칠기 모델과 난류 천이 모델이 결빙 형상 예측의 정확도를 향상시킬수 있음을 보였다. 거칠기 분포와 거칠기 분포에 따른 대류 열전달 계수를 기존 해석 도구에서 사용된 난류모델과 비교를 통해 적용된 모델들을 검증하였다. 본 연구에서 제시된 개선된 모델들은 기존의 실험 결과들과 일치하는 것을 확인하였으며, 결빙 과정의 비정상 특성을 고려하는 것이 해석 정확도를 높일 수 있음을 보였다.
-
dc.description.tableofcontentsChapter 1 Introduction 1
1.1 Inflight icing and simulation 1
1.2 Issues in inflight icing simulation 4
1.2.1 Unsteady effect owing to body motion 5
1.2.2 Surface roughness growth 8
1.2.3 Laminar-turbulence transition due to surface roughness 11
1.3 Motivation and scope of the dissertation 12
Chapter 2 Backgrounds for inflight icing and simulation 16
2.1 Icing scenario 16
2.1.1 Icing clouds 19
2.1.2 Icing envelope 20
2.1.3 Parameters for inflight icing 23
2.1.4 Classification of ice shapes 26
2.2 Numerical simulation for inflight icing 30
2.2.1 Aerodynamic module 32
2.2.2 Droplet impingement module 34
2.2.3 Thermodynamic module 35
2.2.4 Ice growth module 37
2.3 ICEPAC 38
Chapter 3 Quasi-unsteady ice accretion solver 42
3.1 Alternative approaches 43
3.1.1 Analytical methods 43
3.1.2 Loose coupling methods – averaged airflow with icing analysis 45
3.1.3 Loose coupling methods – Applying RANS solver 47
3.1.4 Quasi-steady approach for moving body 49
3.2 Quasi-unsteady ice accretion solver 53
3.2.1 Concept of quasi-unsteady ice accretion solver 53
3.2.2 Implementation of quasi-unsteady ice accretion solver to ICEPAC 56
3.2.3 Quasi-steady ice accretion solver for an oscillating airfoil 63
Chapter 4 Physics based roughness modeling 65
4.1 Physics in roughness development 67
4.2 Alternative approaches 70
4.2.1 Multizone model 70
4.2.2 Empirical roughness distribution model 71
4.2.3 Physics based roughness distribution model 72
4.3 Local surface roughness modeling 74
4.3.1 Maximum bead height 74
4.3.2 Water film behavior 76
4.3.3 Implementation of roughness model in ICEPAC 78
Chapter 5 Roughness induced transition model 80
5.1 Alternative approaches 81
5.1.1 1st generation icing code with inviscid flow solver 81
5.1.2 2nd generation icing code with RANS equation 82
5.2 Roughness induced transition modeling 84
5.2.1 Roughness amplification parameter, Ar 84
5.2.2 Modifying turbulence model 86
5.2.3 Applying model to in-flight icing code 90
Chapter 6 Verification and validation 92
6.1 Quasi-unsteady approach 92
6.1.1 Oscillating NACA 0015 airfoil with a smooth surface 93
6.1.2 Oscillating S809 airfoil with leading-edge roughness 95
6.1.3 Collection efficiency of the oscillating airfoil 99
6.2 Laminar-turbulent transition 102
6.2.1 Flat plate case 102
6.2.2 Airfoil with roughness of leading edge 105
6.3 Roughness distribution model 107
6.3.1 Roughness height comparison 107
Chapter 7 Application: Icing on fixed airfoil 112
7.1 Roughness distribution and laminar-turbulent transition 112
7.2 Effect on roughness and transition model on ice shape 116
Chapter 8 Application: Icing on oscillating airfoil 129
8.1 Effect of oscillating frequency on icing solvers 131
8.1.1 Convective heat transfer 132
8.1.2 Collection efficiency 136
8.1.3 Water film thickness 138
8.2 Effect of roughness on oscillating airfoil icing 140
8.3 Ice shape comparison 145
Chapter 9 Conclusion and Future Works 149
References 155
국문 초록 171
-
dc.format.extentxiii, 172-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectAviation safety-
dc.subjectInflight icing-
dc.subjectOscillating airfoil-
dc.subjectSurface roughness-
dc.subjectQuasi-unsteady approach-
dc.subjectlaminar-turbulent transition-
dc.subjectTurbulent model-
dc.subjectConvective heat transfer coefficient-
dc.subject.ddc621-
dc.titleNumerical Investigation of unsteady characteristics in inflight icing via quasi-unsteady approach-
dc.title.alternative준비정상상태 해석을 통한 항공기 결빙의 비정상 특성에 관한 수치적 연구-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorSeungin Min-
dc.contributor.department공과대학 항공우주공학과-
dc.description.degree박사-
dc.date.awarded2023-02-
dc.identifier.uciI804:11032-000000175430-
dc.identifier.holdings000000000049▲000000000056▲000000175430▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share