Publications

Detailed Information

Development of New Synthetic Methodologies Based on the Functionalization of Carbon–Hydrogen and Carbon–Halogen Bonds : 탄소-수소 및 탄소-할로겐 결합 기능화에 기반한 새로운 합성 방법론의 개발

DC Field Value Language
dc.contributor.advisor이홍근-
dc.contributor.author구장우-
dc.date.accessioned2023-06-29T02:37:36Z-
dc.date.available2023-06-29T02:37:36Z-
dc.date.issued2023-
dc.identifier.other000000174153-
dc.identifier.urihttps://hdl.handle.net/10371/194412-
dc.identifier.urihttps://dcollection.snu.ac.kr/common/orgView/000000174153ko_KR
dc.description학위논문(박사) -- 서울대학교대학원 : 자연과학대학 화학부, 2023. 2. 이홍근.-
dc.description.abstractThe expansion of chemical diversity is one of the most significant approaches in synthetic organic chemistry. Radical chemistry might be the key answer to the question how to achieve chemical diversity. Considering the tremendous reactivity of radicals, applying reactive species to selectively obtain the desired product has been in high demand. Thus, Chapter 1 describes the representative strategies of carbon-centered radical formation and the utilization of the corresponding radical for a new bond-forming method, especially through the cleavage of carbon–hydrogen (Part I) and carbon–halogen (Part II) bonds.
Part 1 covers the functionalization of carbon–hydrogen bonds and activation of the benzylic C(sp3)–H bonds of indoles using the dual catalytic strategy of photocatalysis and nickel catalysis (Chapter 2). The developed reaction undergoes sequential indole oxidation/deprotonation to form a radical in the benzylic position with the most acidic proton. Various aryl and acyl groups were introduced by nickel-catalyzed cross-coupling reactions. The initial step of radical formation was investigated through a mechanistic investigation and supported the high selectivity of benzylic position among other C–H bonds possessing a similar bond dissociation energy.
In Part 2, which handles carbon–halogen bond functionalization, light-mediated carbon radicals from alkyl (Chapter 3) or aryl iodides (Chapter 4) undergo radical borylation to establish new carbon–boron bonds. The products formed in Chapters 3 and 4 have pharmaceutical activity due to the peculiar nature of the boron group. Since the developed reaction does not require metal catalysis or external additives, it is considered eco-friendly and atom-economic process. The key point of the developed reaction is that various chemicals react sequentially to provide the desired product in the reaction media. Moreover, a radical-based carbon–fluorine bond activation with preliminary results will be briefly introduced in Chapter 5. Further mechanistic studies on the exact process of the carbon–fluorine bond cleavage step and the application of this reactivity to other classes of substrates are ongoing in our laboratory.
-
dc.description.abstract화학적 다양성의 확장은 합성 유기 화학 분야에서 가장 깊게 생각해봐야 하는 주제 중 하나입니다. 라디칼을 활용하는 화학 반응은 앞선 논제에 핵심 해결책을 제공할 수 있습니다. 하지만 라디칼은 구조적으로 불안정한 화합물이기에, 가혹한 조건에서 만들어졌으며 통제하기 어려운 반응성을 가지고 있었습니다. 현대 유기 화학의 발전에 따라, 수많은 연구진은 온화한 조건에서 해당 화학종을 만들고자 하였으며 선택적이고 통제 가능한 반응 설계를 위해 오랜 시간 연구해왔습니다. 더불어 다양한 장비와 도구의 도입으로 새로운 반응 시스템을 확립하고자 하였습니다. 1장에서는 지난 십여 년 동안 탄소 중심 라디칼을 형성하는 대표적인 전략들과 이를 활용하여 새로운 화학 결합을 형성하는 방법을 소개합니다. 특히 탄소–수소(1부), 탄소–할로겐(2부) 결합의 활성화로 형성되는 라디칼에 대해 중점적으로 설명합니다.
1부에서는 탄소–수소 결합의 기능화를 중점적으로 다룹니다. 그 예시로 2장에서는, 광촉매와 니켈 촉매의 이중 촉매 전략을 활용하여 인돌의 벤질 자리 탄소–수소 결합 활성화를 소개합니다. 인돌의 산화되기 쉬운 성질에 착안하여, 순차적인 산화/탈 양성자화 과정을 거쳐 가장 산도가 낮은 벤질 자리의 수소를 활성화하게 됩니다. 다양한 아릴 및 아실 그룹은 니켈 촉매의 교차 짝지음 반응을 통해 도입되었습니다. 그뿐만 아니라 복잡한 기능성 기를 가지고 있는 생리활성 분자에도 개발된 반응을 적용할 수 있었습니다. 반응 기작 실험을 통해 라디칼 형성의 초기 단계를 밝힐 수 있었으며, 이는 분자 내에 유사한 결합 해리 에너지를 갖는 탄소–수소 결합 중 벤질 자리만 선택성이 높은 이유를 뒷받침합니다.
2부에서는 탄소–할로겐 결합 기능화를 중점적으로 다룹니다. 빛 에너지에 의해 요오드화 알킬(3장) 또는 요오드화 아릴(4장)으로부터 만들어지는 탄소 라디칼은 라디칼 보릴화 과정을 거쳐 새로운 탄소–붕소 결합을 형성합니다. 3장과 4장에서 형성된 생성물은 붕소기의 독특한 성질로 인해 약학적 활성을 갖게 됩니다. 개발된 반응은 금속촉매나 외부첨가제가 필요하지 않기 때문에 친환경적이고 원자 경제적인 반응이라고 할 수 있습니다. 개발된 반응의 핵심은 다양한 화학물질이 차례대로 반응하여서 한 용기 내에서 원하는 생성물을 제공한다는 것입니다. 또한, 5장에서는 예비 결과와 함께 라디칼 기반의 탄소–불소 결합 활성화를 간략하게 소개합니다. 반응 메커니즘 연구가 현재 연구실에서 진행 중이며, 탄소–불소 결합 절단 단계의 정확한 과정을 밝히고 발견한 반응성을 다양한 기질에 적용하고자 합니다.
-
dc.description.tableofcontentsChapter 1. Functionalization of carbonhydrogen and carbonhalogen bonds through a radical pathway under light irradiation 1
1.1 Introduction 1
1.2 Visible-light-mediated CH bond activation enabling radical generation 2
1.2.1 Hydrogen atom transfer (HAT) strategies 2
1.2.1.1 Indirect HAT approaches 4
1.2.1.1.1 HAT with oxygen-centered radicals 4
1.2.1.1.2 HAT with nitrogen-centered radicals 9
1.2.1.1.3 HAT with sulfur-centered radicals 11
1.2.1.1.4 HAT with halogen radicals 14
1.2.1.1.5 HAT with carbon-centered radicals 17
1.2.1.2 Direct HAT approaches 20
1.2.2 Electron transferproton transfer (ET/PT) strategies 23
1.3 Visible-light-mediated CI bond activation enabling radical generation 25
1.3.1 Light-induced homolysis strategies 26
1.3.2 Photocatalytic strategies 28
1.3.3 Halogen atom transfer (XAT) strategies 30
1.3.4 EDA interaction strategies 32
1.4 Visible-light-mediated CF bond activation enabling radical generation 34
1.4.1 Defluorinative functionalization of C(sp2)F bond 35
1.4.2 Defluorinative functionalization of C(sp3)F bond 38
1.5 Conclusion 41
1.6 References 42
Part I. Visible-light-induced carbonhydrogen bond cleavage for radical generation 48
Chapter 2. Benzylic C(sp3)C(sp2) cross-coupling of indoles enabled by oxidative radical generation and nickel catalysis 48
2.1 Introduction 48
2.2 Results and discussion 51
2.2.1 Optimization of reaction conditions 51
2.2.2 Substrate scope of indoles 53
2.2.3 Substrate scope of (hetero)aryl halides 54
2.2.4 Substrate scope of bioactive molecules 56
2.2.5 Mechanistic investigations 57
2.2.6 Proposed reaction mechanism 59
2.2.7 Substrate scope of symmetric acid anhydrides 61
2.3 Conclusion 62
2.4 Experimental section 63
2.4.1 General experimental details 63
2.4.2 Substrate preparations 65
2.4.3 Characterization data of substrates 67
2.4.4 General procedure for arylation and acylation 72
2.4.5 Characterization data 74
2.4.6 Optimization of reaction conditions 105
2.4.7 Radical trapping experiments 110
2.4.8 Control experiments to exclude the HAT process 112
2.4.9 Fluorescence quenching experiment (SternVolmer relationship) 114
2.4.10 Electrochemical characterizations 115
2.4.11 Kinetic isotope effect (KIE) experiment 119
2.5 References 121
Part II. Visible-light-induced carbonhalogen bond cleavage for radical generation 131
Chapter 3. A tandem process for the synthesis of β-aminoboronic acids from aziridines with haloamine intermediates 131
3.1 Introduction 131
3.2 Results and discussion 134
3.2.1 Evaluation of reaction parameters 134
3.2.2 Sequential ring opening and radical borylation of aziridines 135
3.2.3 Mechanistic studies 137
3.2.4 Plausible mechanistic scenario 139
3.3 Conclusion 140
3.4 Experimental section 141
3.4.1 General experimental details 141
3.4.2 Optimisation of reaction conditions 142
3.4.3 General procedure for synthesis of aziridines 143
3.4.4 General procedure for photoinduced borylation of aziridines 145
3.4.5 Instability evaluation of β-aminoboronate products 148
3.4.6 Investigation of modified reaction conditions for aziridines derived from styrene 149
3.4.7 A summary of reactions with challenging substrates 151
3.4.8 Mechanistic studies 152
3.4.9 Miscellaneous experiments 156
3.4.10 Characterization data of synthesized compounds 159
3.5 References 182
Chapter 4. Metal-free 1,2-arylboration for the synthesis of heterocyclic boronate esters via photoinduced C(sp2)I bond cleavage 188
4.1 Introduction 188
4.2 Results and discussion 190
4.2.1 Evaluation of reaction parameters 190
4.2.2 Expected reaction mechanism 192
4.2.3 Preliminary 1,2-arylboration results (intra- and intermolecular reactions) 193
4.3 Conclusion 194
4.4 Experimental section 195
4.4.1 General experimental details 195
4.4.2 General procedure for the preparation of aryl iodide 196
4.4.3 General procedure for intramolecular 1,2-arylboration of unactivated alkenes 197
4.4.4 General procedure for intermolecular 1,2-arylboration of unactivated alkenes 198
4.4.5 Characterization data of synthesized compounds 199
4.5 References 201
Chapter 5. Functionalization of the benzylic C(sp3)F bond driven by the excited state of boryl radicals 205
5.1 Introduction 205
5.2 Results and discussion 208
5.2.1 Evaluation of reaction parameters 208
5.2.2 Plausible reaction mechansim 209
5.2.3 Mechanistic studies 212
5.3 Experimental section 214
5.3.1 General experimental details 214
5.3.2 General procedure for hydrodefluorination reaction 215
5.3.3 Competitive experiments of two leaving groups 215
5.3.4 Characterization data of synthesized compounds 218
5.4 References 219
Abstract in Korean 222
-
dc.format.extentxii, 224-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectcarbon-
dc.subjecthydrogen-
dc.subjecthalogen-
dc.subjectradical-
dc.subjectphotochemistry-
dc.subjectindole-
dc.subjectaziridine-
dc.subjectaminoboronic acid-
dc.subjectheterocyclic compound-
dc.subjectcross-coupling-
dc.subjectborylation-
dc.subjecthydrodefluorination-
dc.subjectfluorine atom transfer-
dc.subject.ddc540-
dc.titleDevelopment of New Synthetic Methodologies Based on the Functionalization of Carbon–Hydrogen and Carbon–Halogen Bonds-
dc.title.alternative탄소-수소 및 탄소-할로겐 결합 기능화에 기반한 새로운 합성 방법론의 개발-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorKoo, Jangwoo-
dc.contributor.department자연과학대학 화학부-
dc.description.degree박사-
dc.date.awarded2023-02-
dc.identifier.uciI804:11032-000000174153-
dc.identifier.holdings000000000049▲000000000056▲000000174153▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share