Publications

Detailed Information

A Cu2O-CuSCN Nanocomposite as a Hole-Transport Material of Perovskite Solar Cells for Enhanced Carrier Transport and Suppressed Interfacial Degradation

DC Field Value Language
dc.contributor.authorKim, Jinhyun-
dc.contributor.authorLee, Younghyun-
dc.contributor.authorGil, Bumjin-
dc.contributor.authorYun, Alan Jiwan-
dc.contributor.authorKim, Jaewon-
dc.contributor.authorWoo, Hyungsub-
dc.contributor.authorPark, Kimin-
dc.contributor.authorPark, Byungwoo-
dc.date.accessioned2023-07-11T01:29:34Z-
dc.date.available2023-07-11T01:29:34Z-
dc.date.created2020-09-25-
dc.date.created2020-09-25-
dc.date.issued2020-08-
dc.identifier.citationACS Applied Energy Materials, Vol.3 No.8, pp.7572-7579-
dc.identifier.issn2574-0962-
dc.identifier.urihttps://hdl.handle.net/10371/195031-
dc.description.abstractInterfacial degradation in perovskite solar cells is a critical issue affecting long-term stability for future commercialization. In particular, a perovskite and an organic hole-transport layer (HTL) react easily when the device is exposed to extreme operating conditions (heat, light, and air). To prevent degradation, an inorganic CuSCN HTL has emerged as an alternative, yet the interfacial reactivity is still not clearly elucidated. Herein, Cu2O and CuSCN are coutilized to form an efficient and stable HTL. While uniform film formation using Cu2O is difficult despite its high mobility, a Cu2O-CuSCN nanocomposite can be excellently synthesized as an effective HTL, exhibiting a power conversion efficiency (PCE) of 19.2% and sustaining its PCE over 90% for 720 h under extreme conditions (85 degrees C/85% of relative humidity, encapsulated). A chemical distribution analysis by secondary-ion mass spectroscopy (SIMS) suggests that a Cu2O nanoparticle layer protects the interface between the perovskite and CuSCN. The optoelectronic properties of the nanocomposite HTL and the improved solar cell performance are correlated with the recombination rate, electronic trap distribution in the band gap, and charge extraction efficiencies.-
dc.language영어-
dc.publisherAmerican Chemical Society-
dc.titleA Cu2O-CuSCN Nanocomposite as a Hole-Transport Material of Perovskite Solar Cells for Enhanced Carrier Transport and Suppressed Interfacial Degradation-
dc.typeArticle-
dc.identifier.doi10.1021/acsaem.0c01001-
dc.citation.journaltitleACS Applied Energy Materials-
dc.identifier.wosid000563784400037-
dc.identifier.scopusid2-s2.0-85091056531-
dc.citation.endpage7579-
dc.citation.number8-
dc.citation.startpage7572-
dc.citation.volume3-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorPark, Byungwoo-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusTRAP DENSITY-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusLOW-COST-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusLAYER-
dc.subject.keywordPlusCU2O-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusPRECURSOR-
dc.subject.keywordAuthorperovskite solar cells-
dc.subject.keywordAuthorinorganic hole-transport layer-
dc.subject.keywordAuthorCu2O nanoparticles-
dc.subject.keywordAuthordefect passivation-
dc.subject.keywordAuthorstability-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share