Publications

Detailed Information

Economic and Ecological Impacts of Adjusting the Age-Class Structure in Korean Forests: Application of Constraint on the Period-to-Period Variation in Timber Production for Long-Term Forest Management

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

Kim, Dayoung; Han, Hee; Shin, Joonghoon; Kim, Younghwan; Chang, Yoonseong

Issue Date
2022-12
Publisher
MDPI Open Access Publishing
Citation
Forests, Vol.13 No.12, p. 2144
Abstract
South Korea's successful reforestation efforts over the past 50 years have led to abundant forest resources. However, intensive reforestation during the 1970s and 1980s skewed the forests' age distribution towards forest stands aged 30 years or older, which results in an unbalanced distribution of age-class, requiring redistribution with harvest and effective regeneration plans to produce a sustained yield of timber as well as long term ecological benefits. During this conversion process, variations in timber production can occur, causing economic and ecological risks if excessive. To prevent these likely risks, permissible levels of increase and decrease in timber production can be restricted in the planning phase. In determining the appropriate variation rate in timber production, it is necessary to understand the impacts of variation in timber production on forest management. This study performed a sensitivity analysis to evaluate the economic and ecological impacts of constraining the period-to-period variation in timber production. A multi-objective linear programming (MOLP) forest management planning model was utilized to study forests in Mt. Gari, South Korea. Nine management alternatives were set with different levels of variation rate in timber production and further constraints. The total volume and net present value (NPV) of timber production, carbon storage, and water storage were analyzed for each alternative. As timber production variation rates decreased, the amount of timber production increased and forest carbon storage decreased; furthermore, NPV diminished as variation constraints strengthened. These differences were mainly caused by selection of regeneration species according to the constraint on variation in timber production. If the variation rate was strictly restricted, the area of timber species with short rotation age increased during conversion period, in order to reduce the gap of timber production between periods. At the latter part of planning horizon, the area of broad-leaved trees was enlarged as the burden of adjusting age-class structure reduced. The appropriate variation rate in timber production was determined to be 30%, based on considerations regarding the economic and ecological impact of the variation on the forest.
ISSN
1999-4907
URI
https://hdl.handle.net/10371/195528
DOI
https://doi.org/10.3390/f13122144
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share