Publications

Detailed Information

Contrasting Miscibility of Ionic Liquid Membranes for Nearly Perfect Proton Selectivity in Aqueous Redox Flow Batteries

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

Lee, Jungho; Kim, Seulwoo; Park, Kyobin; Koo, Hansol; Park, Chanui; Park, Yuwon; Lee, Won Bo; Lee, Young Joo; Lee, Kyu Tae

Issue Date
2023-12
Publisher
WILEY-V C H VERLAG GMBH
Citation
Advanced Functional Materials, Vol.33 No.52
Abstract
Ion-selective membranes are widely used in various energy storage applications. However, conventional polymer-based ion-selective membranes, such as Nafion, are not perfectly ion-selective, leading to a significant permeation of undesirable ionic species. As the imperfect ion-selectivity of membranes leads to the failure of energy storage devices, much effort is devoted to improving membrane ion-selectivity. Herein, an immiscible liquid-state membrane is introduced for aqueous redox flow batteries. As hydrophobic ionic liquids are immiscible with aqueous catholyte and anolyte solutions, they separate the two without crossover. This property renders them suitable for use as a membrane for aqueous redox flow batteries. In addition, ionic liquids with long side alkyl chains, such as 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HMIM-TFSI), are miscible with sulfuric acid, whereas transition metal sulfates remain insoluble in HMIM-TFSI. For this reason, HMIM-TFSI is selectively permeable to protons and remains impermeable to transition metal cations. As a result, the HMIM-TFSI membrane is almost perfectly proton-selective, leading to negligible permeability of unfavorable ionic species, such as transition metal cations. Eventually, the HMIM-TFSI membrane shows the excellent electrochemical performance of vanadium redox flow batteries, such as negligible self-discharge over 2800 h, high Coulombic efficiency (& AP;99%), and stable capacity retention over 100 cycles. The contrasting miscibility of the hydrophobic ionic liquid membrane, which is miscible with sulfuric acid but immiscible with aqueous catholyte and anolyte solutions, gives rise to an almost perfect proton-selectivity, leading to negligible permeability of unfavorable ionic species, such as transition metal cations. As a result, the HMIM-TFSI membrane shows the excellent electrochemical performance of vanadium redox flow batteries.image
ISSN
1616-301X
URI
https://hdl.handle.net/10371/195818
DOI
https://doi.org/10.1002/adfm.202306633
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Cross-Field

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share