Publications

Detailed Information

Longitudinal multi-omics study of palbociclib resistance in HR-positive/HER2-negative metastatic breast cancer

Cited 2 time in Web of Science Cited 6 time in Scopus
Authors

Park, Yeon Hee; Im, Seock-Ah; Park, Kyunghee; Wen, Ji; Lee, Kyung-Hun; Choi, Yoon-La; Lee, Won-Chul; Min, Ahrum; Bonato, Vinicius; Park, Seri; Ram, Sripad; Lee, Dae-Won; Kim, Ji-Yeon; Lee, Su Kyeong; Lee, Won-Woo; Lee, Jisook; Kim, Miso; Kim, Hyun Seon; Weinrich, Scott L.; Ryu, Han Suk; Kim, Tae Yong; Dann, Stephen; Kim, Yu-Jin; Fernandez, Diane R.; Koh, Jiwon; Wang, Shuoguo; Park, Song Yi; Deng, Shibing; Powell, Eric; Ravi, Rupesh Kanchi; Bienkowska, Jadwiga; Rejto, Paul A.; Park, Woong-Yang; Kan, Zhengyan

Issue Date
2023-07
Publisher
BioMed Central
Citation
Genome Medicine, Vol.15 No.1, p. 55
Abstract
BackgroundCyclin-dependent kinase 4/6 inhibitor (CDK4/6) therapy plus endocrine therapy (ET) is an effective treatment for patients with hormone receptor-positive/human epidermal receptor 2-negative metastatic breast cancer (HR+/HER2- MBC); however, resistance is common and poorly understood. A comprehensive genomic and transcriptomic analysis of pretreatment and post-treatment tumors from patients receiving palbociclib plus ET was performed to delineate molecular mechanisms of drug resistance.MethodsTissue was collected from 89 patients with HR+/HER2- MBC, including those with recurrent and/or metastatic disease, receiving palbociclib plus an aromatase inhibitor or fulvestrant at Samsung Medical Center and Seoul National University Hospital from 2017 to 2020. Tumor biopsy and blood samples obtained at pretreatment, on-treatment (6 weeks and/or 12 weeks), and post-progression underwent RNA sequencing and whole-exome sequencing. Cox regression analysis was performed to identify the clinical and genomic variables associated with progression-free survival.ResultsNovel markers associated with poor prognosis, including genomic scar features caused by homologous repair deficiency (HRD), estrogen response signatures, and four prognostic clusters with distinct molecular features were identified. Tumors with TP53 mutations co-occurring with a unique HRD-high cluster responded poorly to palbociclib plus ET. Comparisons of paired pre- and post-treatment samples revealed that tumors became enriched in APOBEC mutation signatures, and many switched to aggressive molecular subtypes with estrogen-independent characteristics. We identified frequent genomic alterations upon disease progression in RB1, ESR1, PTEN, and KMT2C.ConclusionsWe identified novel molecular features associated with poor prognosis and molecular mechanisms that could be targeted to overcome resistance to CKD4/6 plus ET.
ISSN
1756-994X
URI
https://hdl.handle.net/10371/195853
DOI
https://doi.org/10.1186/s13073-023-01201-7
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Medicine
  • Department of Medicine
Research Area Clinical Medicine

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share