Publications

Detailed Information

Metabolic Engineering of Methylomonas sp. DH-1 for the production of D-lactate from methane : Methylomonas sp. DH-1의 대사공학을 통한 메탄으로부터 D형 젖산 생산

DC Field Value Language
dc.contributor.advisor한지숙-
dc.contributor.author이종관-
dc.date.accessioned2023-11-20T04:27:03Z-
dc.date.available2023-11-20T04:27:03Z-
dc.date.issued2023-
dc.identifier.other000000179153-
dc.identifier.urihttps://hdl.handle.net/10371/196581-
dc.identifier.urihttps://dcollection.snu.ac.kr/common/orgView/000000179153ko_KR
dc.description학위논문(박사) -- 서울대학교대학원 : 공과대학 화학생물공학부, 2023. 8. 한지숙.-
dc.description.abstractBiological conversion of methane to valuable chemicals such as a lactic acid is considered as a promising strategy regarding the abundance of methane. Here, a newly isolated Type I methanotroph, Methylomonas sp. DH-1 was used as a host strain for D-LA production from methane. By using evolutionary and metabolic engineering, highly efficient D-LA producing methane biocatalyst was developed.
Firstly, to improve lactate tolerance of Methlyomonas sp. DH-1, adaptive laboratory evolution was performed by gradually increasing the lactate concentrations in the culture medium. The LA evolved strain (JHM80) survived in the presence of 8 g/L of lactate while the wild-type strain barely grows in the presence of 0.5 g/L. By introducing stereospecific D-lactate dehydrogenase gene (Lm.LDH) into the chromosome of JHM80 while deleting the glgA gene encoding glycogen synthase, 750 mg/L of D-LA was produced with the periodic methane supply, which was 7.5-fold higher than the wild-type strain. LA production was further improved by medium neutralization and optimization, resulting in a titer of 1.19 g/L and a yield of 0.245 g/g CH4.
Secondly, to demonstrate the LA tolerance mechanisms in the LA evolved strains, whole genome sequencing was carried out. Genome analysis revealed up-regulation of AYM39_21120 (watR) gene encoding a LysR-type transcription factor, by 2bp (TT) deletion in the promoter region is partly responsible for LA tolerance of JHM80. Overexpression of watR gene improved LA tolerance of wild-type strain while the deletion of watR gene abolished LA tolerance of JHM80. Transcriptomic analysis further identified the overexpression of RND-type efflux pump was a major LA tolerance contributor mediated by WatR transcription factor.
Lastly, inducible promoters were used for enhancing LDH expression while minimizing the growth defects by lactate accumulation in the early growth phase. Under the control of IPTG inducible tac promoter, LDH expression was increased by 3.1 folds than the native glgA promoter. The glgC gene encoding enzyme related to ADP-glucose synthesis was further deleted to prevent the growth inhibition by ADP-glucose accumulation, resulting the final LA producing strain, JHM806. In the continuous gas fermentation, JHM806 produced 6.16 g/L of D-LA with the productivity of 0.057 g/L/h, which are highest ever reported in methanotrophs.
-
dc.description.abstract자연에서 가장 풍부한 탄소원 중 하나인 메탄을 생물학적으로 전환하여 젖산과 같은 가치있는 화학물질을 생산하는 것은 유망한 전략이다. 이 연구에서, 메탄으로부터 D 형 젖산을 생산하기 위해 새롭게 선별된 메탄자화균 (Methlyomonas sp. DH-1)을 모균주로 이용하여 적응 진화 전략과 대사공학 전략을 통해 효율적으로 D 형 젖산을 생산하는 바이오 촉매를 개발하였다. 수준에서 규명하였다.
첫 번째로 적응진화 전략을 통해 신규 메탄자화균주의 젖산 내성을 향상하였다. 야생형 균주는 0.5 g/L 농도의 젖산이 존재 하에 거의 성장하지 못하는 반면, 적응진화 균주 (JHM80)는 8 g/L 농도의 젖산이 첨가된 배지에서 생존하였다. D 형 젖산 생산을 위하여, 입체특이성이 매우 높은 Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 율의 D 형 젖산 탈수효소를 도입하고 글리코겐 합성경로를 결손하였다. 야생형 균주와 비교하여, 이 전략을 통해 적응 진화 균주는 750 mg/L 농도의 D 형 젖산을 생산하였다. 배지 중화와 최적화를 통해 젖산 생산량을 1.19 g/L 농도로 향상하였다.
다음으로, 적응진화 균주의 젖산 내성 기작을 규명하기 위하여 전장 유전체 분석 (whole genome sequencing)을 수행하였다. 그 결과, 프로모터 (promoter) 영역의 2개의 염기 (TT) 결손에 의한 AYM39_21120 유전자 (watR)의 과발현이 젖산 내성에 부분적으로 기여하였다. watR 유전자의 과발현은 야생형 균주의 젖산 내성을 향상한 반면, watR 유전자의 결손은 적응진화 균주의 젖산 내성을 감소시켰다. RNA 분석 (RNA sequencing)을 통해 전사인자인 watR 유전자의 target 유전자로 RND 유형의 efflux pump가 젖산 내성에 기여함을 규명하였다.
마지막으로, 유도성 프로모터를 이용하여 젖산 생산에 의한 성장 저해를 최소화 하면서 젖산 탈수소 효소의 발현을 효율적으로 강화하였다. 추가로, ADP-glucose 축적에 의한 세포 독성을 감소하기 위하여 ADP-glucose 합성 효소를 결손하였다. 다음과 같은 전략을 통해 개발된 JHM806 균주는 발효기 배양 조건에서 6.16 g/L 농도의 D 형 젖산을 생산하였으며, 생산성은 0.057 g/(L·h) 이었다.
-
dc.description.tableofcontentsAbstract i
Contents iii
List of figures vi
List of tables viii
List of abbreviations ix
Contents iii
Chapter 1. Research background and objective 1
Chapter 2. Literature review 4
2.1. Importance of biological conversion of methane 5
2.1.1. Methane 5
2.1.2. Biological conversion of methane 6
2.1.3. sMMO and pMMO 7
2.2. Recent developments in methanotrophs 13
2.2.1. Assimilation pathways of aerobic methanotrophs 13
2.2.2. Genetic manipulation tools in methanotrophs 15
2.2.3. Chemicals produced in methanotrophs 16
2.2.4. Methylomonas sp. DH-1 20
2.3. Microbial production of lactic acid 21
2.3.1. Lactic acid 21
2.3.2. LA production by lactic acid bacteria 22
Chapter 3. Materials and methods 28
3.1. Strains and culture conditions 29
3.2. Plasmids 31
3.3. Gene manipulation in Methylomonas sp. DH-1 34
3.4. Adaptive laboratory evolution 34
3.5. Whole genome sequencing analysis 35
3.6. Quantitative transcription PCR (qRTP-PCR) and RNA sequencing analysis 35
3.7. Fermenter culture condition 37
Chapter 4. Production of D-lactate using lactate tolerant strain of Methylomonas sp. DH-1 39
4.1. Introduction 40
4.2. Development of LA tolerant strain of Methylomonas sp. DH-1 42
4.3. Selecting antibiotic resistance genes as selection marker 47
4.4. Expression of heterologous D-lactate dehydrogenase in JHM80 51
4.5. Conclusion 56
Chapter 5. Analysis of LA tolerance mechanism in evolved strains 57
5.1. Introduction 58
5.2. Whole genome sequencing 60
5.3. Functional analysis of mutated genes 63
5.4. RNA sequencing of watR overexpressed strain 66
5.5. RND-type efflux pump contributes to organic acid tolerance in Methylomonas sp. DH-1 70
5.6. Conclusion 76
Chapter 6. Improvement of LA production by fine-tuned expression of LDH and reducing toxic effects 77
6.1. Introduction 78
6.2. Expression of Lm. LDH using different promoters 80
6.3. Evaluation of tac promoter for LA production 86
6.4. Improvement of D-LA production by disruption of glucose 1-phosphate adenylyltransferase 90
6.5. Conclusion 97
Chapter 7. Discussion 98
References 102
Abstract in Korean 117
-
dc.format.extentX,118-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectMethane-
dc.subjectD-LA-
dc.subjectMethylomonas sp. DH-1-
dc.subjectAdaptive evolution-
dc.subjectMetabolic engineering-
dc.subject.ddc660.6-
dc.titleMetabolic Engineering of Methylomonas sp. DH-1 for the production of D-lactate from methane-
dc.title.alternativeMethylomonas sp. DH-1의 대사공학을 통한 메탄으로부터 D형 젖산 생산-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorJong Kwan LEE-
dc.contributor.department공과대학 화학생물공학부-
dc.description.degree박사-
dc.date.awarded2023-08-
dc.identifier.uciI804:11032-000000179153-
dc.identifier.holdings000000000050▲000000000058▲000000179153▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share