Publications

Detailed Information

Gravitational lensing and wave probes of dark objects and inflationary selection of the standard model universe : 중력파와 중력렌즈를 통한 어두운 물체 탐사 및 급팽창에서의 표준모형 우주 고르기

DC Field Value Language
dc.contributor.advisor정성훈-
dc.contributor.author김태훈-
dc.date.accessioned2023-11-20T04:47:56Z-
dc.date.available2023-11-20T04:47:56Z-
dc.date.issued2023-
dc.identifier.other000000177832-
dc.identifier.urihttps://hdl.handle.net/10371/197266-
dc.identifier.urihttps://dcollection.snu.ac.kr/common/orgView/000000177832ko_KR
dc.description학위논문(박사) -- 서울대학교대학원 : 자연과학대학 물리·천문학부, 2023. 8. 정성훈.-
dc.description.abstractGravity is an integral component in cosmology. The evolution and behavior of the universe on every scale throughout its entire history and future are governed by gravitational interaction among the constituents. On the observational side, gravity enabled us to probe various dark objects, through their gravitational interaction with bright ones or by producing gravitational lensing effects. Furthermore, the recently detected gravitational wave will open a new window for observing the universe.

The present dissertation is aimed at using gravity to broaden our reachable range in understanding the universe on both the observational and the theoretical sides. On the observational side, we developed new gravitational wave probes for cosmic string and axion dark matter, which can search for unconstrained parameter spaces. Their characteristic signals can be used for identification in the case of positive detections. Also, we suggested a gravitational lensing parallax search for primordial black holes in the mass range available for dark matter, where it turned out that using gamma-ray bursts as light sources can close the whole dark matter mass window. On the theoretical side, we proposed a possibility that the current weak scale has been selected during inflation by quantum back-reaction on the volume expansion rate. In addition, we also elaborated a new mechanism of primordial black hole production during a first-order phase transition in the early universe.
-
dc.description.abstract중력은 우주론에 있어 필수 불가결한 요소이다. 우주의 행태와 변화는 모든 시간과 규모에서 중력에 의해 결정되어 오고 있으며, 우리가 우주를 관측할 때도 빛으로는 볼 수 없는 어두운 물체를 밝은 물체와의 중력 상호작용이나 중력렌즈 효과를 통해 탐사하곤 한다. 더 나아가 최근 탐지에 성공한 중력파는 인류가 우주를 바라볼 수 있는 새로운 창을 열어줄 것으로 기대되고 있다.

이 논문은 중력을 활용하여 우리가 우주에 대해 접근하고 이해할 수 있는 영역을 관측적 측면과 이론적 측면 모두에서 넓히고자 하였다. 관측적 측면에 있어서는 우주 끈과 액시온 암흑 물질을 찾기 위해 중력파를 사용한 새로운 탐사 방법을 제시하였으며, 이를 통해 각각에 대해 아직 닿을 수 없었던 변수 영역에 접근할 수 있을 것임을 확인하였다. 이들이 중력파에 새기는 특징적인 신호를 통해 우리가 받은 어떤 중력파 신호에서 파원과 우리 사이에 이들 물체가 있었는지를 알아낼 수 있을 것임도 논하였다. 또한 이 논문에서는 암흑 물질 전부를 구성할 수 있는 가벼운 질량 대역의 원시 블랙홀을 탐지할 수 있는 방법인 중력렌즈 시차를 제시하여, 감마선 폭발을 광원으로 하면 이 질량 대역의 원시 블랙홀을 탐지할 수 있을 것임을 보였다. 한편 이론적 측면에서는 급팽창 동안의 양자장론적 효과가 부피팽창률에 미치는 역반응을 통해 현재의 전기·약 작용의 에너지 규모가 선택되었을 수 있다는 가능성을 제시하였으며, 여기에 더해 초기 우주의 일차 상전이 과정에서 원시 블랙홀이 생성되는 새로운 과정을 분석하고 다듬었다.
-
dc.description.tableofcontentsAbstract i
List of Figures vi
List of Tables xi
1 Introduction 1
1.1 Brief review of cosmology 1
1.2 Gravity in cosmology 5
1.3 Dissertation objective 6
2 Background knowledge: gravitational wave, gravitational lensing, and inflation 8
2.1 Gravitational waves 8
2.1.1 Ripples in spacetime 9
2.1.2 Gravitational waves from binary merger 11
2.1.3 Observable of gravitational wave detection 14
2.2 Gravitational lensing 17
2.2.1 Wave propagation in weakly curved spacetime 18
2.2.2 Thin lens approximation 20
2.2.3 Geometrical optics limit 23
2.2.4 Application to point mass lens 25
2.3 Inflation 28
2.3.1 FRW universe 29
2.3.2 The flatness and the horizon problem 30
2.3.3 The solution: inflation 32
2.3.4 Giving perturbations to FRW universe 33
2.3.5 Quantum theory of perturbations in inflation 37
2.3.6 Evolution of perturbation and horizon crossing 40
2.3.7 Classical universe from quantum fluctuation 42
2.3.8 Stochastic description of light scalar fields in inflation 50
3 Probing Cosmic Strings with Gravitational-Wave Fringe 56
3.1 Introduction 57
3.2 Lensing fringe from cosmic strings 58
3.2.1 Straight strings 58
3.2.2 Loops 62
3.3 Lensing detection estimation 64
3.3.1 Detection criteria 64
3.3.2 Leading-order waveforms 66
3.4 Prospects at future detectors 68
3.5 Discussion 70
3.5.1 Distinction from point-mass fringes 70
3.5.2 Prospect comparison with lensing of light 71
3.5.3 Robustness against astrophysical uncertainties 72
3.6 Conclusion 73
Appendices 74
3.A More on ln L and relative likelihood 74
3.B Detection rate calculation 75
3.C Detection rate for each mass bins 77
4 Gamma-ray burst lensing parallax: Closing the primordial black hole dark matter mass window 79
4.1 Introduction 80
4.2 Lensing Parallax 80
4.3 GRB Parameters 83
4.4 GRB Results 84
4.4.1 Nearby-Stars Results 86
4.5 Discussion 87
Appendices 87
4.A Useful numbers and formulas 87
4.B Finite source-size effect 88
4.C Computing optical depth and constraints 89
4.D Effects of PBH clustering 90
4.E GRB source parameter distribution 91
5 Constraining the gravitational coupling of axion dark matter at LIGO 96
5.1 Introduction 97
5.2 Overview 99
5.3 Propagation through coherent axions 100
5.3.1 Coupled wave equations 100
5.3.2 Solution for finite propagation 102
5.4 Signal 104
5.4.1 Signal 1: Resonance with finite coherence 104
5.4.2 Signal 2: Explosion 106
5.4.3 Modeling an axion halo with multiple coherent patches 107
5.4.4 Summing effects from multiple patches 108
5.5 LIGO bounds and prospects 110
5.5.1 Detection criteria 110
5.5.2 Results 111
5.5.3 Time-delay of a resonance from dispersion 113
5.5.4 Similar bounds on the axion-photon coupling 114
5.6 Discussions 115
5.6.1 Energy conservation and axion backreaction 115
5.6.2 Stimulated axion decay rate 115
5.6.3 Effective 'graviton' mass 116
5.6.4 Axions in the source galaxy and intergalactic region 116
5.7 Corollary: Absence of parity-violation observables on the chirping GW 117
5.8 Conclusions 118
Appendices 120
5.A Solving wave equation through the Mathieu equation 120
5.B Sketch for the axion search in the frequency-time plane 124
6 Hubble selection of the weak scale from QCD quantum critical point 128
6.1 Introduction 129
6.2 Model 130
6.3 QCD quantum critical points 132
6.4 Hubble selection 134
6.5 The weak scale criticality 137
6.6 Discussion 140
Appendices 141
6.A Quantum critical points of LSM 141
6.B Quantum regimes 143
6.B.1 Equivalence of quantum regimes 143
6.B.2 Scaling of equilibrium solution 144
6.B.3 Boundary effects 146
6.C Numerical calculation of the equilibrium distribution 147
7 PBH Formation from Overdensities in Delayed Vacuum Transitions 149
7.1 Introduction 150
7.2 First-order Phase Transition 151
7.3 PBH Formation Mechanism 153
7.3.1 Formation criterion 154
7.3.2 Formation probability 155
7.3.3 Comparison with 2106.05637 158
7.4 PBH Abundance Calculation 159
7.4.1 Numerical setup 159
7.4.2 Semi-quantitative analysis on PBH formation probability 162
7.5 Discussion 164
Appendices 165
7.A Consistency check for completion of FOPT 165
8 Conclusion 171
Bibliography 173
초록 204
감사의 글 205
-
dc.format.extentxi, 207-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectCosmology-
dc.subjectGravitational lensing-
dc.subjectGravitational wave-
dc.subjectInflation-
dc.subjectCosmic phase transition-
dc.subject우주론-
dc.subject중력렌즈-
dc.subject중력파-
dc.subject급팽창-
dc.subject우주 상전이-
dc.subject.ddc523.01-
dc.titleGravitational lensing and wave probes of dark objects and inflationary selection of the standard model universe-
dc.title.alternative중력파와 중력렌즈를 통한 어두운 물체 탐사 및 급팽창에서의 표준모형 우주 고르기-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorKim, TaeHun-
dc.contributor.department자연과학대학 물리·천문학부-
dc.description.degree박사-
dc.date.awarded2023-08-
dc.identifier.uciI804:11032-000000177832-
dc.identifier.holdings000000000050▲000000000058▲000000177832▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share