Publications

Detailed Information

Fabrication of piezoresistive Si nanorod-based pressure sensor arrays: A promising candidate for portable breath monitoring devices

Cited 50 time in Web of Science Cited 55 time in Scopus
Authors

Ghosh, Ramesh; Song, Minho S.; Park, JunBeom; Tchoe, Youngbin; Guha, Puspendu; Lee, Wanhee; Lim, Yoonseo; Kim, Bosung; Kim, Sang-Woo; Kim, Miyoung; Yi, Gyu-Chul

Issue Date
2021-02
Publisher
Elsevier BV
Citation
Nano Energy, Vol.80, p. 105537
Abstract
This paper reports on the controlled fabrication of a highly sensitive piezoresistive sensor by using Si nanorod (NR) arrays. An efficient, large-area, scalable strategy was adopted to fabricate the pressure sensors by incorporating chemically etched, high-aspect-ratio, vertical Si NR arrays between two thin Au layers. The piezoresistive properties corresponding to dimension- and position-controlled and randomly etched, closely packed, and thin Si NR arrays were exploited to fabricate the small, portable, and device-compatible pressure sensors. The Si-NR-based piezoresistive sensors exhibited a high sensitivity of 0.49 MPa-1, thereby demonstrating its superiority over other unconventional piezoresistive nanomaterials such as Si with different configurations of nanostructures. Furthermore, the sensors exhibited a large variation (similar to 45%) in the current at a constant bias voltage of 2 V under a weak applied pressure corresponding to an inert gas flow of 5 sccm. The excellent pressure sensing performance of the piezoresistive Si NRs enabled the efficient detection of changes corresponding to the human breathing pattern. In particular, the key advantages of such pressure sensors is the simple, inexpensive, and scalable fabrication process; high sensitivity with ultra-low-pressure detection; and excellent ambient stability (>several months) with a high durability pertaining to more than 1,000 cycles of pressure loading/ unloading. Furthermore, we demonstrated the ability of the pressure sensor to act as a portable human breath sensor to monitor respiratory parameters in a noninvasive and personalized manner. The results can provide direction for the realization of next-generation breath-sensing gadgets and other leading-edge applications in the domain of electronic and healthcare devices.
ISSN
2211-2855
URI
https://hdl.handle.net/10371/197823
DOI
https://doi.org/10.1016/j.nanoen.2020.105537
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share