Publications

Detailed Information

Systematic identification of a nuclear receptor-enriched predictive signature for erastin-induced ferroptosis

Cited 20 time in Web of Science Cited 22 time in Scopus
Authors

Kwon, Ok-Seon; Kwon, Eun-Ji; Kong, Hyeon-Joon; Choi, Jeong-Yoon; Kim, Yun-Jeong; Lee, Eun-Woo; Kim, Wankyu; Lee, Haeseung; Cha, Hyuk-Jin

Issue Date
2020-10
Publisher
Elsevier BV
Citation
Redox Biology, Vol.37, p. 101719
Abstract
Erastin, a synthetic lethal compound against cancer expressing an oncogenic RAS, inhibits cystine/glutamate antiporters and causes ferroptosis. However, despite recent evidence for the mechanisms underlying ferroptosis, molecular biomarkers of erastin-dependent ferroptosis have not been identified. Here, we employed isogenic lung cancer cell models to show that a redox imbalance leads to glutathione depletion and ferroptosis. Subsequent transcriptome analysis of pan-cancer cell lines revealed that the activity of transcription factors, including NRF2 and AhR, serve as important markers of erastin resistance. Based on the integrated expression of genes in the nuclear receptor meta-pathway (NRM), we constructed an NRM model and validated its robustness using an independent pharmacogenomics dataset. The NRM model was further evaluated by sensitivity tests on nine cancer cell lines for which erastin sensitivities had not been determined. Our pharmacogenomics approach has the potential to pave the way for the efficient classification of patients for therapeutic intervention using erastin.
ISSN
2213-2317
URI
https://hdl.handle.net/10371/197905
DOI
https://doi.org/10.1016/j.redox.2020.101719
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share