Publications

Detailed Information

Evolution of Tropical Cyclone Properties Across the Development Cycle of the GISS-E3 Global Climate Model

Cited 1 time in Web of Science Cited 1 time in Scopus
Authors

Russotto, Rick D.; Strong, Jeffrey D. O.; Camargo, Suzana J.; Sobel, Adam; Elsaesser, Gregory S.; Kelley, Maxwell; Del Genio, Anthony; Moon, Yumin; Kim, Daehyun

Issue Date
2022-01
Publisher
John Wiley and Sons Inc
Citation
Journal of Advances in Modeling Earth Systems, Vol.14 No.1, p. e2021MS002601
Abstract
The next-generation global climate model from the NASA Goddard Institute for Space Studies, GISS-E3, contains many improvements to resolution and physics that allow for improved representation of tropical cyclones (TCs) in the model. This study examines the properties of TCs in two different versions of E3 at different points in its development cycle, run for 20 years at 0.5° resolution, and compares these TCs with observations, the previous generation GISS model, E2, and other climate models. E3 shares many TC biases common to global climate models, such as having too few tropical cyclones, but is much improved from E2. E3 produces strong enough TCs that observation-based wind speed thresholds can now be used to detect and track them, and some storms now reach hurricane intensity; neither of these was true of E2. Model development between the first and second versions of E3 further increased the number and intensity of TCs and reduced TC count biases globally and in most regions. One-year sensitivity tests to changes in various microphysical and dynamical tuning parameters are also examined. Increasing the entrainment rate for the more strongly entraining plume in the convection scheme increases the number of TCs (though also affecting other climate variables, and in some cases increasing biases). Variations in divergence damping did not have a strong effect on simulated TC properties, contrary to expectations based on previous studies. Overall, the improvements in E3 make it more credible for studies of TC activity and its relationship to climate.
ISSN
1942-2466
URI
https://hdl.handle.net/10371/200941
DOI
https://doi.org/10.1029/2021MS002601
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Natural Sciences
  • Department of Earth and Environmental Sciences
Research Area Climate Change, Earth & Environmental Data, Severe Weather, 기후과학, 위험기상, 지구환경 데이터과학

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share