Publications

Detailed Information

Vertical structure and physical processes of the Madden-Julian oscillation: Exploring key model physics in climate simulations

Cited 296 time in Web of Science Cited 307 time in Scopus
Authors

Jiang, Xianan; Waliser, Duane E.; Xavier, Prince K.; Petch, Jon; Klingaman, Nicholas P.; Woolnough, Steven J.; Guan, Bin; Bellon, Gilles; Crueger, Traute; DeMott, Charlotte; Hannay, Cecile; Lin, Hai; Hu, Wenting; Kim, Daehyun; Lappen, Cara-Lyn; Lu, Mong-Ming; Ma, Hsi-Yen; Miyakawa, Tomoki; Ridout, James A.; Schubert, Siegfried D.; Scinocca, John; Seo, Kyong-Hwan; Shindo, Eiki; Song, Xiaoliang; Stan, Cristiana; Tseng, Wan-Ling; Wang, Wanqiu; Wu, Tongwen; Wu, Xiaoqing; Wyser, Klaus; Zhang, Guang J.; Zhu, Hongyan

Issue Date
2015-05
Publisher
American Geophysical Union
Citation
Journal of geophysical research - Atmospheres, Vol.120 No.10, pp.4718-4748
Abstract
Aimed at reducing deficiencies in representing the Madden-Julian oscillation (MJO) in general circulation models (GCMs), a global model evaluation project on vertical structure and physical processes of the MJO was coordinated. In this paper, results from the climate simulation component of this project are reported. It is shown that the MJO remains a great challenge in these latest generation GCMs. The systematic eastward propagation of the MJO is only well simulated in about one fourth of the total participating models. The observed vertical westward tilt with altitude of the MJO is well simulated in good MJO models but not in the poor ones. Damped Kelvin wave responses to the east of convection in the lower troposphere could be responsible for the missing MJO preconditioning process in these poor MJO models. Several process-oriented diagnostics were conducted to discriminate key processes for realistic MJO simulations. While large-scale rainfall partition and low-level mean zonal winds over the Indo-Pacific in a model are not found to be closely associated with its MJO skill, two metrics, including the low-level relative humidity difference between high- and low-rain events and seasonal mean gross moist stability, exhibit statistically significant correlations with the MJO performance. It is further indicated that increased cloud-radiative feedback tends to be associated with reduced amplitude of intraseasonal variability, which is incompatible with the radiative instability theory previously proposed for the MJO. Results in this study confirm that inclusion of air-sea interaction can lead to significant improvement in simulating the MJO.
ISSN
2169-897X
URI
https://hdl.handle.net/10371/200995
DOI
https://doi.org/10.1002/2014JD022375
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Natural Sciences
  • Department of Earth and Environmental Sciences
Research Area Climate Change, Earth & Environmental Data, Severe Weather, 기후과학, 위험기상, 지구환경 데이터과학

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share