Publications

Detailed Information

DROP: Dynamics Responses from Human Motion Prior and Projective Dynamics

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

Jiang, Yifeng; Won, Jungdam; Ye, Yuting; Liu, C. Karen

Issue Date
2023
Publisher
Association for Computing Machinery, Inc
Citation
Proceedings - SIGGRAPH Asia 2023 Conference Papers, SA 2023
Abstract
Synthesizing realistic human movements, dynamically responsive to the environment, is a long-standing objective in character animation, with applications in computer vision, sports, and healthcare, for motion prediction and data augmentation. Recent kinematics-based generative motion models offer impressive scalability in modeling extensive motion data, albeit without an interface to reason about and interact with physics. While simulator-in-the-loop learning approaches enable highly physically realistic behaviors, the challenges in training often affect scalability and adoption. We introduce DROP, a novel framework for modeling Dynamics Responses of humans using generative mOtion prior and Projective dynamics. DROP can be viewed as a highly stable, minimalist physics-based human simulator that interfaces with a kinematics-based generative motion prior. Utilizing projective dynamics, DROP allows flexible and simple integration of the learned motion prior as one of the projective energies, seamlessly incorporating control provided by the motion prior with Newtonian dynamics. Serving as a model-agnostic plug-in, DROP enables us to fully leverage recent advances in generative motion models for physics-based motion synthesis. We conduct extensive evaluations of our model across different motion tasks and various physical perturbations, demonstrating the scalability and diversity of responses.
URI
https://hdl.handle.net/10371/201164
DOI
https://doi.org/10.1145/3610548.3618175
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • Dept. of Computer Science and Engineering
Research Area Computational Performance, Computer Graphics, Machine Learning, Robotics

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share