Publications

Detailed Information

Efficient multi-key homomorphic encryption with packed ciphertexts with application to oblivious neural network inference

Cited 102 time in Web of Science Cited 136 time in Scopus
Authors

Chen, Hao; Kim, Miran; Dai, Wei; Song, Yongsoo

Issue Date
2019-11
Publisher
CCS
Citation
Proceedings of the ACM Conference on Computer and Communications Security, pp.395-412
Abstract
© 2019 Association for Computing Machinery.Homomorphic Encryption (HE) is a cryptosystem which supports computation on encrypted data. López-Alt et al. (STOC 2012) proposed a generalized notion of HE, called Multi-Key Homomorphic Encryption (MKHE), which is capable of performing arithmetic operations on ciphertexts encrypted under different keys. In this paper, we present multi-key variants of two HE schemes with packed ciphertexts. We present new relinearization algorithms which are simpler and faster than previous method by Chen et al. (TCC 2017). We then generalize the bootstrapping techniques for HE to obtain multi-key fully homomorphic encryption schemes. We provide a proof-of-concept implementation of both MKHE schemes using Microsoft SEAL. For example, when the dimension of base ring is 8192, homomorphic multiplication between multi-key BFV (resp. CKKS) ciphertexts associated with four parties followed by a relinearization takes about 116 (resp. 67) milliseconds. Our MKHE schemes have a wide range of applications in secure computation between multiple data providers. As a benchmark, we homomorphically classify an image using a pre-trained neural network model, where input data and model are encrypted under different keys. Our implementation takes about 1.8 seconds to evaluate one convolutional layer followed by two fully connected layers on an encrypted image from the MNIST dataset.
ISSN
1543-7221
URI
https://hdl.handle.net/10371/201202
DOI
https://doi.org/10.1145/3319535.3363207
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • Dept. of Computer Science and Engineering
Research Area Cryptography, Privacy, Security

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share