Publications

Detailed Information

Ultralight, Ultrastiff Mechanical Metamaterials

Cited 1526 time in Web of Science Cited 1657 time in Scopus
Authors

Zheng, Xiaoyu; Lee, Howon; Weisgraber, Todd H.; Shusteff, Maxim; DeOtte, Joshua; Duoss, Eric B.; Kuntz, Joshua D.; Biener, Monika M.; Ge, Qi; Jackson, Julie A.; Kucheyev, Sergei O.; Fang, Nicholas X.; Spadaccini, Christopher M.

Issue Date
2014-06
Publisher
American Association for the Advancement of Science
Citation
Science, Vol.344 No.6190, pp.1373-1377
Abstract
The mechanical properties of ordinary materials degrade substantially with reduced density because their structural elements bend under applied load. We report a class of microarchitected materials that maintain a nearly constant stiffness per unit mass density, even at ultralow density. This performance derives from a network of nearly isotropic microscale unit cells with high structural connectivity and nanoscale features, whose structural members are designed to carry loads in tension or compression. Production of these microlattices, with polymers, metals, or ceramics as constituent materials, is made possible by projection microstereolithography (an additive micromanufacturing technique) combined with nanoscale coating and postprocessing. We found that these materials exhibit ultrastiff properties across more than three orders of magnitude in density, regardless of the constituent material.
ISSN
0036-8075
URI
https://hdl.handle.net/10371/201824
DOI
https://doi.org/10.1126/science.1252291
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • Department of Mechanical Engineering
Research Area Additive Manufacturing, Architected Materials, Programmable Matter

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share